Name:	Banner #: B00

1. A regression analysis is to be carried out for the model $y = \beta_0 + \beta_1 X_1 + \epsilon$. There are six observations, with $\mathbf{y}' = (3, 2, 1, 1, 2, 0)$ and

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -2 \\ 1 & -1 & 1 \end{bmatrix}$$

(a) Find $(\boldsymbol{X}'\boldsymbol{X})^{-1}$

(b) Find the (6,6) element of $X(X'X)^{-1}X'$. (We will see later that this is referred to as the "leverage" of the 6'th observation.)

(c) Find the least squares estimator of β .

You can verify your calculation of $\hat{\boldsymbol{\beta}}$ with the following R code:

y= c(3, 2, 1, 1, 2, 0)
x1=c(1,1,1,-1,-1,-1)
x2=c(1,-2,1,1,-2,1)
lm(y^xx1+x2)

- 2. Suppose that X and Y are both have mean 0 and variance 1, and that the covariance between X and Y is -.5.
 - (a) What are the mean and variance of X + Y?

(b) What are the mean and variance of X - 2Y?

(c) What is the covariance between X + Y and 2X - 3Y?

3. For the data y = (1, 2, 4) and x = (0, 1, 2), in order to to fit the model $y = \beta_0 + \beta_1 x + \epsilon$ using matrix calculations, what is the appropriate matrix **X**?

4. Suppose X, Y and Z are random variables with means $\mu_X = 1$, $\mu_Y = 2$ and $\mu_Z = 3$, variances $\sigma_X^2 = 9$, $\sigma_Y^2 = 4$ and $\sigma_Z^2 = 1$, and covariances Cov(X, Y) = 3, Cov(Y, Z) = 1 and Cov(X, Z) = 1.5. Let U = X - Y + 2Z and V = X + 2Y - 2Z.

What is E(U)?

What is Var(U)?

What is Cov(U, V)?

5. Suppose that Y is a random vector with mean vector (3, 0, 1)', and covariance matrix

Γ	1	0	0	
	0	2	0	
	0	0	3	

Let $\mathbf{b} = (-3, 0, 1)'$ and

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 0 & 3 \\ 0 & 0 & 2 \\ 3 & 2 & 4 \end{array} \right]$$

(a) What is the mean of $\mathbf{AY} + \mathbf{b}$?

(b) What is the covariance matrix of $\mathbf{AY} + \mathbf{b}$?

(c) What is the mean of $\mathbf{Y}'\mathbf{AY}$?

6. An extension of the usual multiple regression model is the 'mixed effects' model

$$y = Xeta + Zu + \epsilon$$

The mixed effects model assumes that

- $\boldsymbol{\epsilon}$ is a random vector with mean vector **0** and covariance matrix $\sigma^2 \boldsymbol{I}$
- \boldsymbol{u} is a random vector with mean vector $\boldsymbol{0}$ and covariance matrix $au^2 \boldsymbol{I}$
- \boldsymbol{u} and $\boldsymbol{\epsilon}$ are independent of one another
- X, Z are matrices of known constants, and β is a vector of constants.

Find $Cov(\boldsymbol{y}, \boldsymbol{u})$, the covariance between y and u.