

STATISTICS 3340, Assignment 3, due Sunday, October 26, 11:59 PM.

Name: _____

Banner #: B00_____

1. A regression analysis is to be carried out for the model $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$.

There are six observations, with $\mathbf{y}' = (3, 2, 1, 1, 2, 0)$ and

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -2 \\ 1 & -1 & 1 \end{bmatrix}$$

(a) Find $(\mathbf{X}' \mathbf{X})^{-1}$

(b) Find the (6,6) element of $\mathbf{X}(\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$. (We will see later that this is referred to as the “leverage” of the 6'th observation.)

(c) Find the least squares estimator of $\boldsymbol{\beta}$.

You can verify your calculation of $\hat{\boldsymbol{\beta}}$ with the following R code:

```
y= c(3, 2, 1, 1, 2, 0)
x1=c(1,1,1,-1,-1,-1)
x2=c(1,-2,1,1,-2,1)
lm(y~x1+x2)
```

2. Suppose that X and Y are both have mean 0 and variance 1, and that the covariance between X and Y is -.5.

- What are the mean and variance of $X + Y$?
- What are the mean and variance of $X - 2Y$?
- What is the covariance between $X + Y$ and $2X - 3Y$?

3. For the data $y = (1, 2, 4)$ and $x = (0, 1, 2)$, in order to fit the model $y = \beta_0 + \beta_1 x + \epsilon$ using matrix calculations, what is the appropriate matrix \mathbf{X} ?

4. Suppose that Y is a random vector with mean vector $(3, 0, 1)'$, and covariance matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Let $\mathbf{b} = (-3, 0, 1)'$ and

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix}$$

(a) What is the mean of $\mathbf{A}Y + \mathbf{b}$?

(b) What is the covariance matrix of $\mathbf{A}Y + \mathbf{b}$?

(c) What is the mean of $Y'AY$?

5. An extension of the usual multiple regression model is the ‘mixed effects’ model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \boldsymbol{\epsilon}$$

The mixed effects model assumes that

- $\boldsymbol{\epsilon}$ is a random vector with mean vector $\mathbf{0}$ and covariance matrix $\sigma^2 \mathbf{I}$
- \mathbf{u} is a random vector with mean vector $\mathbf{0}$ and covariance matrix $\tau^2 \mathbf{I}$
- \mathbf{u} and $\boldsymbol{\epsilon}$ are independent of one another
- \mathbf{X}, \mathbf{Z} are matrices of known constants, and $\boldsymbol{\beta}$ is a vector of constants.

Find $Cov(\mathbf{y}, \mathbf{u})$, the covariance between y and u .