Partial F test

(Section 3.3 in Montgomery et al)

The partial F test compares a full model with a reduced model which is obtained from the full model by setting r of the β_j 's equal to 0.

• Full model:

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_{k-r} x_{k-r} + \beta_{k-r+1} x_{k-r+1} + \ldots + \beta_k x_k + \epsilon.$$

- Reduced model: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_{k-r} x_{k-r} + \epsilon$.
- Null hypothesis: $H_0: \beta_{k-r+1} = \beta_{k-r+2} + \ldots + \beta_k = 0$. Sets r parameters equal to 0.
- *n* observations, p = k + 1 predictor variables.
- Calculate error sum of squares for full (*SSE_{full}*) and reduced (*SSE_{red}*) models.
- Test statistic:

$$F = \frac{(SSE_{red} - SSE_{full})/r}{MSE_{full}}$$

• p-value: $P(F_{r,n-p} > F_{obs})$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ = うへの