ux=c(0,0,1) Sx=matrix(c(1,0,-1,0,2,3,-1,3,7),byrow=T,ncol=3) Sx b=c(-1,2,1) A=matrix(c(1,-1,2,3,-3,-1,-1,0,1),byrow=T,ncol=3) A%*%ux+b #mean of AX+b A%*%Sx%*%t(A) #covariance of AX+b M=matrix(c(1,-1,2,-1,-3,-1,2,-1,-1),byrow=T,ncol=3) Sx%*%M # SxM sum(diag(Sx%*%M)) # trace of SxM #mean of X'MX+17 t(ux)%*%M%*%ux+sum(diag(Sx%*%M))+17 #requres M to be symmetric c=c(1,0,0) B=matrix(c(1,2,3,0,1,0,-1,-2,-3),byrow=T,ncol=3) CovXY=matrix(c(1,0,-1,2,1,-1,-1,3,4),byrow=T,ncol=3) uy=c(1,2,3) CovXY[1,2] #covariance of X1 with Y2 is 1,2 element of CovXY A%*%ux+B%*%uy+b-c #mean of AX+BY+b-c A%*%CovXY%*%t(B) #COV(AX+b,BY+c)