Leverage

@ Some cases have high leverage, the potential to greatly affect
the fit.

@ These cases are outliers in the space of predictors.

@ Often the residuals for these cases are not large because the
response is in line with the other values, or the high leverage
has caused the fitted model to be pulled toward the observed
response.

@ The leverage exerted by the i'th case is hj;, the i'th diagonal
element of the hat matrix.

@ a rule of thumb is to flag cases where h;; > 2p/n, where p is
the number of columns of X, equal to kK + 1 in a multiple
regression with k predictors and an intercept.



Leverage, continued

@ In simple linear regressionm

h 1 + (X,' — )_<)2
W= n —
n Zj:l(xj —X)?
so the minimum is 1/n at X and the maximum occurs when x
is furthest from X.

@ More generally, h;j measures the distance of the predictors
from their centroid.

® The sum of the hj is tr(H) = k + 1 = p, so their average is
h=(k+1)/n=p/n.



A property of leverage - 0 < h; <1

Because H=HH and H=H',

hi =Y hihi =h;+> b3 (1)
=t P
SO
hii(1 — h;) > 0
and
0< h; <1



Leverage, continued

@ The fitted value at case i is

n n
gi=(Hy)i =Y hjyj = hiyi + > _ hyy;
Jj=1 J#
a linear combination of all the responses.

@ ldeally all cases contribute, with those at and closest to x;
dominating.

@ In influential cases hj; approaches 1, and hj; approaches 0, for

JF#I



Multicolinearity

@ Multicollinearity between the predictor variables means that
the columns of X are nearly linearly dependent.
o In this case the matrix X T X is ill conditioned, in which case

o (XTX)~1 will typically have large diagonal elements

o meaning that the standard errors of the f3; are large

o and the least squares estimates of the 3;'s will often be
excessively large in absolute value.

@ variance inflation factors measure the linear relationships
among columns of X.

@ The VIF for the j'th regesson coefficient can be written as

1

VIFi = ——

where R? is the coefficient of determination from regressing
X; on the other predictor variables.



Multicolinearity, continued

@ Rule of thumb: A VIF larger than 5 implies serious problems
with multicollinearity.

@ When there is multicollinearity the estimated 3's are very
sensitive to minor changes in the data, as are the predicted
values of future y's.

@ What to do in the presence of multicolinearity?

e Try some new combinations of the predictors which might be
closer to orthogonal. It is always best to centre predictor
variables by removing their means, as the centred
variables will have less correlation than the uncentred
variables.

o Ridge regression - replaces X" X by X" X + kl. Gives reduced
variance to the resulting estimator, but generates a biased
estimator.

e Principal components regression - uses new variables (principal
components) which are transformed versions of the predictor
variables, and are orthogonal. Principal components are a
topic in Stat4350.

e Remove some predictor variables from the regression.



Standardized residuals

@ We have seen that the usual residuals typically do not have
the same variances.

@ Therefore, when doing residual analysis, it is best to use the
externally standardized residuals.
. ei/(1—hi) e
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where



Standardized residuals - continued

@ ¢ is the usual residual y; — y;

@ h;j; is the leverage of the i'th case

» _ SSE
® Sy = k-2

o SSE(;) = SSE — lf"ZhH is called the deleted residual sum of
squares.

is called the deleted variance estimate, and

@ Rule of thumb - it is recommended that cases with
standardized residual greater than 2 in absolute value should
be examined by the data analyst.



Case Deletion Diagnostics

o the i'th deleted estimate of 3 is the least squares estimate
when the /'th case is deleted, and is given by

€j
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@ Cook’s distance for the i'th case is defined as

1 2 a oy T~ 9 Fi-9)
D; = ) XTX
o It measures the change in the estimate of 3 when the ith case
is deleted

o and where y ;) are the predicted values based on all of the
observations but the i/'th, Cook’s distance also measures the
change in predicted values

o A rule of thumb is to carefully exam cases for which
D; > F(.5,p,n—p) =~ 1.



Transformations

e A variance stabilizing transformation may be useful when
the variance of y appears to depend on the value of the
regressor variables, or on the mean of y. In general, if y has
mean /i, and variance 0}2,, then a function h(y) has
approximate mean h(y,) and variance approximately equal to
(h'(1y))?02. This can be used to calculate a variance
stabilizing transform.

@ For example, suppose Y has a Poisson distribution with mean
py = p and variance 02 = p. let Z= h(Y) =Y. Then
H(Y)=.5Y"12 so that h'(u) = .5u~"/?, and the variance
of Z is approximately (H'(uy))?02 = (.5p~1/2)% = 25. The
variance stabilizing transformation for the Poisson distribution
is the v transform.



Generalized least squares

o Generalized (or weighted) least squares gives an estimate of 3
in the model

o y=XpB+¢, with E(e) =0 Cov(e) = o2V,
e with V known.

@ the estimate turns out to be
B _ (XTv—lx)—lev—ly

@ The Gauss-Markov theorem states that B is the minimum
variance unbiased estimator of 3, so the best that one can do
in terms of minimizing the expected mean squared error.



Intrinsically linear models

@ Some models are intrinsically linear, and can be appropriately
transformed to give a linear relation.

@ For example, in Economics, the Cobb-Douglas production
function is P = kL*C7€,

@ Taking logarithms gives
log(P) = Bo + B1log(L) + B2log(C) + log(e€)

@ Which is a linear function of log(L) and log(C) with
parameters By = log(k), f1 = o and (B, = .



another intrinsically linear model

@ In biochemistry, where y is reaction rate and x is substrate
concentration, the Michaelis-Menten equation states that

VimaxX

Km + x

@ Vinax and K, are parameters to be estimated.

@ Note that as x — o0, ¥ — Vinax-

@ The Lineweaver-Burk plot, or double reciprocal plot, is a plot
of 1/y vs 1/x, provides a convenient means of estimating the
two model parameters.

y:
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o Find the Ieast squares estimators of 8y and (7. and transform



How to choose a model

@ If candidate models are restricted to multiple regression
models, one strategy is to choose a model which maximizes
adjusted R? among the models under consideration.

@ For a model with p parameters,

2 _ n—1 2
a1 (2= 0 1)

where Rg is the usual R? for that model.

@ R?is not a good criterion to use, as it will always be
maximized for the largest model considered.

@ It turns out that choosing the candidate model to maximize

Rf\dj,p is equivalent to choosing the model which minimizes
MSE (p).



