Let
$$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$$
 where \mathbf{X}_1 is $n \times (k + 1 - r)$, \mathbf{X}_2 is $n \times r$ and
 $\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix}$ to conform, so $\boldsymbol{\beta}_1$ is $(k + 1 - r) \times 1$ and $\boldsymbol{\beta}_2$ is $r \times 1$.

The following notes:

- justify the partial F test for testing H_0 : $\beta_2 = 0$ when the regression model already includes X_1 .
- prove the equivalence of the t test for a single variable, and the associated F test
- motivate the following sequential 3 step testing procedure:
 - Regress y on X₁ to get residuals e₁
 - 2 Regress X_2 on X_1 (each column) to get residuals e_2
 - **3** Regress \boldsymbol{e}_1 on \boldsymbol{e}_2 to get $\hat{\boldsymbol{\beta}}_2$.

 motivate the partitioning of the regression sum of squares, and construction of the following ANOVA table

Source	SS	D.F.	MS
\boldsymbol{X}_1	$SSR(\beta_1)$	k – r	$SSR(\beta_1)/(k-r)$
$\boldsymbol{X}_2 \boldsymbol{X}_1$	$SSR(\beta_2 eta_1)$	r	$SSR(m{eta}_2 m{eta}_1)/r$
Error	SSE	n-1-k	MSE
Total	SST	n-1	

The F statistic for the test that $H_0: \beta_2 = 0$, when the variables in X_2 are entered into the regression after the variables in X_1 is given by

$$F = \frac{MSR(\beta_2|\beta_1)}{MSE} = \frac{(SSE(\beta_1) - SSE(\beta_1, \beta_2))/r}{MSE} \sim F_{r,n-1-k}$$

- In the case that X_2 consists of a single regressor, the plot of e_1 vs e_2 is called an **added variable plot**. It is useful to diagnose the functional form of the relationship between X_2 and y given that the variable in X_1 are already included in the regression.
- If a linear regression line is fit to the added variable plot, it can be shown that: the slope of the line is the coefficient of X₂ in the multivariate regresson containing both X₁ and X₂.

Partial F test - Review - you are not responsible for remembering the algebraic derivations

Suppose we have the model

$$oldsymbol{y} = oldsymbol{X}_1oldsymbol{eta}_1 + oldsymbol{\epsilon}$$

and want to add the r predictors X_2 .

- For example, we may wish to test the hypotheses $H_0: \beta_2 = 0$ $H_A: \beta_{2j} \neq 0$ for some j
- Then we want to compare the fit of the reduced model under H_0 to that of the full model under H_1 .
- In total there are k predictors, so X₁ consists of the column of 1's and k - r columns of predictors.
- Write $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ where \mathbf{X}_1 is $n \times (k+1-r)$, \mathbf{X}_2 is $n \times r$ and $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ to conform, so β_1 is $(k+1-r) \times 1$ and β_2 is $r \times 1$.

• Then the model containing \boldsymbol{X}_1 and \boldsymbol{X}_2 can be written

$$\boldsymbol{y} = \boldsymbol{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}.$$

< ∃ >

3) J

Case 1: Predictors orthogonal

• If the new predictors X_2 are orthogonal to the old ones $X_1^T X_2 = 0$ and

$$oldsymbol{X}^{\mathsf{T}}oldsymbol{X} = \left(egin{array}{cc} oldsymbol{X}_1^{\mathsf{T}}oldsymbol{X}_1 & 0 \ 0 & oldsymbol{X}_2^{\mathsf{T}}oldsymbol{X}_2 \end{array}
ight)$$

which has inverse

$$(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1} = \begin{pmatrix} (\boldsymbol{X}_1^{\mathsf{T}}\boldsymbol{X}_1)^{-1} & 0\\ 0 & (\boldsymbol{X}_2^{\mathsf{T}}\boldsymbol{X}_2)^{-1} \end{pmatrix}.$$

• The least squares estimates are

$$\begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} & 0 \\ 0 & (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{X}_1^T \boldsymbol{y} \\ \boldsymbol{X}_2^T \boldsymbol{y} \end{pmatrix}$$
$$= \begin{pmatrix} (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{y} \\ (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^T \boldsymbol{y} \end{pmatrix}.$$

- The estimates of β₁ are unchanged and β₂ is estimated separately from the new columns.
- The regression sum of squares is

$$SSR(\boldsymbol{\beta}) = \boldsymbol{\hat{\beta}}^{T} \boldsymbol{X}^{T} \boldsymbol{y} - n\bar{y}^{2}$$
$$= \boldsymbol{\hat{\beta}}_{1}^{T} \boldsymbol{X}_{1}^{T} \boldsymbol{y} - n\bar{y}^{2} + \boldsymbol{\hat{\beta}}_{2}^{T} \boldsymbol{X}_{2}^{T} \boldsymbol{y}$$
$$= SSR(\boldsymbol{\beta}_{1}) + SSR(\boldsymbol{\beta}_{2})$$

and factors into two parts depending on \boldsymbol{X}_1 and \boldsymbol{X}_2 separately.

• The extra regression sum of squares for **X**₂ given that **X**₁ is already in the model can be written

$$SSR(\boldsymbol{\beta}_2) = \boldsymbol{\beta}_2^T \boldsymbol{X}_2^T \boldsymbol{y} \\ = \boldsymbol{y}^T \boldsymbol{X}_2 (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^T \boldsymbol{y} \\ = \boldsymbol{y}^T \boldsymbol{H}_2 \boldsymbol{y}$$

where $\boldsymbol{H}_2 = \boldsymbol{X}_2 (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^T$ is the projection onto the subspace spanned by the columns of \boldsymbol{X}_2 (which is orthogonal to \boldsymbol{X}_1).

• Under the null hypothesis that $oldsymbol{eta}_2=0$

$$\frac{SSR(\beta_2)}{\sigma^2} \sim \chi_r^2$$

and

$$F = rac{MSR(eta_2)}{MS_{Res}} \sim F_{r,n-1-k}$$

and large F gives evidence against H_0 .

Case 2: Predictors not orthogonal

- When the new predictors are not orthogonal to the old ones, $\boldsymbol{X}_1^T \boldsymbol{X}_2 \neq 0$, the situation is more complicated.
- The model can be written as before, and then manipulated to create new predictors which are orthogonal

where

$$\boldsymbol{H}_1 = \boldsymbol{X}_1 (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T$$

is the projection on the subspace spanned by the predictors $\pmb{X}_1,$ and

$$\boldsymbol{\theta} = \boldsymbol{\beta}_1 + (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{X}_2 \boldsymbol{\beta}_2$$
(1)

is a new parameter created from β_1 and β_2 .

• The matrices X_1 and $(I - H_1)X_2$ are orthogonal, so estimates of θ and β_2 can be obtained separately, as above:

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{y}$$
(2)

and

$$\hat{\boldsymbol{\beta}}_2 = [\boldsymbol{X}_2^T (\boldsymbol{I} - \boldsymbol{H}_1) \boldsymbol{X}_2]^{-1} \boldsymbol{X}_2^T (\boldsymbol{I} - \boldsymbol{H}_1) \boldsymbol{y}.$$
(3)

• Rearranging (1) gives

$$\hat{\boldsymbol{eta}}_1 = \hat{\boldsymbol{ heta}} - (\boldsymbol{X}_1^{ op} \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^{ op} \boldsymbol{X}_2 \hat{\boldsymbol{eta}}_2$$

or

$$\hat{\boldsymbol{\beta}}_1 = [\boldsymbol{X}_1^T \boldsymbol{X}_1]^{-1} \boldsymbol{X}_1^T (\boldsymbol{y} - \boldsymbol{X}_2 \hat{\boldsymbol{\beta}}_2).$$
(4)

• From (3) we see that $\hat{\beta}_2$ is the result of regressing one set of residuals, $(I - H_1)y$ on another $(I - H_1)X_2$.

- The latter is a matrix of residuals obtained by regressing each column of **X**₂ on **X**₁.
- It contains the information from \boldsymbol{X}_2 not already explained by $\boldsymbol{X}_1.$

Example:

Suppose that $\beta_1 = (\beta_0, \beta_1)^T$ and β_2 has just one element β_2 . That is, the first regression is $y = \beta_0 + \beta_1 x_1 + e$, and we are looking at the effect of adding a second variable x_2 to the model. The matrix X_1 consists of a column of 1's, and a column containing data on x_1 . X_2 has just one column, the data on x_2 . In this case:

() $\hat{ heta}$ are the least squares estimates for the model

$$y = \theta_0 + \theta_1 x_1 + e$$
. Call them $\hat{\theta}_0$ and $\hat{\theta}_1$.

- $(\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{X}_2$ are the regression coefficients from the model $x_2 = \gamma_0 + \gamma_1 x_1 + e$. Call them $\hat{\gamma}_0$ and $\hat{\gamma}_1$.
- β̂₂ is the least squares estimator from the regression of (*I H*₁)*y* on (*I H*₁)*X*₂, which does NOT include an intercept. Call the estimate â.
 - Then the line before (4) says that $\hat{\beta}_1 = (\hat{\beta}_0, \hat{\beta}_1)^T = \hat{\theta} - \hat{\alpha}\hat{\gamma} = (\hat{\theta}_0 - \hat{\alpha}\hat{\gamma}_0, \hat{\theta}_1 - \hat{\alpha}\hat{\gamma}_1)$
 - $\hat{\beta}_2$ was given by (3).

• Together, these are
$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)^T$$
.

```
data=read.csv(
"http://chase.mathstat.dal.ca/~bsmith/stat3340/Data/NFLdata
attach(data)
lm1=lm(y~x1)
e1=resid(lm1)
coef(lm1) #theta hat in notes
> (Intercept)
                          x1
-4.330015011 0.005352206
lm2=lm(x2^{x1})
e2=resid(lm2)
coef(lm2)
> > coef(lm2)
  (Intercept)
                          \mathbf{x1}
2227.55824645
                 -0.04755155
```

example, continued

```
lm3=lm(e1~e2-1)
b2=coef(lm3) #alpha hat in notes, which is betahat_2 in full
b0=coef(lm1)[1]-coef(lm3)*coef(lm2)[1] #gives bethat_0
b1=coef(lm1)[2]-coef(lm3)*coef(lm2)[2] #gives bethat_1
c(b0,b1,b2)
(Intercept) x1 e2
-12.176470327 0.005519703 0.003522447
```

```
>
```

```
> > #check by fitting full model
lm(y~x1+x2,data=data)
```

> Call: lm(formula = y ~ x1 + x2, data = data)

Coefficients: (Intercept) x1 x2 -12.176470 0.005520 0.003522

- This verifies the 3 step procedure for this particular example.
- See the "trees" example for another case when adding a single variable to a simple linear regression.
- The added variable plot is a plot of the first set of residuals against the second. It is used to suggest the functional form of x2 to add.

- Regression on both sets of variables can be thought of as a sequential three step procedure
 - Regress \boldsymbol{y} on \boldsymbol{X}_1 to get residuals $\boldsymbol{e}_1 = (\boldsymbol{I} \boldsymbol{H}_1)\boldsymbol{y}$ and estimates $\hat{\boldsymbol{\theta}}$.
 - **2** Regress X_2 on X_1 (each column) to get residuals $e_2 = (I H_1)X_2$.
 - Regress e₁ on e₂ to get β̂₂ as in (3) above and solve for β̂₁ as in (4) above.

Partitioning the regression sum of squares

Step 1 gives SSR(β₁), the amount explained by X₁ in the regression of y on X₁, and

$$SST = SSR(\beta_1) + SSE(\beta_1)$$

In the ANOVA table for the regression of y on X_1 and X_2 , SSR (β_1) is the regression SS entry for the terms X_1 .

Step 3 gives SSR(β₂|β₁), the regression SS for X₂ given that X₁ is already accounted for. This is the regression SS entry in the ANOVA table for the regression of y on X₁ and X₂.

- When additional variables X₂ are added to a reduced model containing X₁, the error SS in the reduced model is partitioned into a reduced error SS for the full model, plus the regression SS for the variables added.
- Equivalently, the regression SS for the terms added is the difference in error SS of the "reduced" and "full" models.

$$SSR(\beta_2|\beta_1) = SSE(\beta_1) - SSE(\beta_1, \beta_2)$$

```
>lm1=lm(y~x1)
> anova(lm1)
Analysis of Variance Table
```

Df Sum Sq Mean Sq F value Pr(>F) x1 1 115.07 115.07 14.119 0.000877 *** Residuals 26 211.90 8.15

```
> lmbig=lm(y~x1+x2)
> anova(lmbig)
Analysis of Variance Table
```

 Df
 Sum Sq Mean Sq F value
 Pr(>F)

 x1
 1
 115.068
 115.068
 22.378
 7.492e-05

 x2
 1
 83.343
 16.208
 0.0004635

 Residuals
 25
 128.553
 5.142

- $SSE(\beta_1) = SSE_{reduced} = 211.90$
- $SSE(\beta_1, \beta_2) = SSE_{full} = 128.553$
- $SSR(\beta_2|\beta_1) = 211.90 128.553 \approx 83.343$

御 ト 4 臣 ト 4 臣 ト 「臣 」 わえで

• Equivalently, the total regression sum of squares (when both X_1 and X_2 are included), is

$$SSR(\beta_1, \beta_2) = SSR(\beta_1) + SSR(\beta_2|\beta_1)$$

where the extra sum of squares for regression explained by X_2 given that X_1 is in the model is

$$SSR(eta_2|eta_1) = \hat{eta}_2^T oldsymbol{X}_2^T (oldsymbol{I} - oldsymbol{H}_1) oldsymbol{y} = oldsymbol{y}^T oldsymbol{H}_{2.1} oldsymbol{y}$$
 with

$$\boldsymbol{H}_{2.1} = (\boldsymbol{I} - \boldsymbol{H}_1)\boldsymbol{X}_2[\boldsymbol{X}_2^{\mathsf{T}}(\boldsymbol{I} - \boldsymbol{H}_1)\boldsymbol{X}_2]^{-1}\boldsymbol{X}_2^{\mathsf{T}}(\boldsymbol{I} - \boldsymbol{H}_1)$$

- **H**_{2.1} is the projection onto the component of the subspace spanned by **X**₂ which is orthogonal to the subspace spanned by the columns of **X**₁.
- The analysis above shows that the partition of the sum of squares into two parts depends on the order in which the variables are added into the model when the columns of X₁ are not orthogonal to the columns of X₂
- The numerator of the F test of the null hypothesis $H_0: \beta_2 = 0$ is

$$(SSE(\beta_1) - SSE(\beta_1, \beta_2))/r = SSR(\beta_2|\beta_1)/r$$

where the regression sum of squares is for those terms which were added last.

• If X_1 and X_2 are orthogonal, $(I - H_1)X_2 = X_2$ so that $SSR(\beta_2|\beta_1) = SSR(\beta_2)$, and the order of inclusion doesn't matter.

ANOVA table showing the decomposition of *SSR* - know how to construct/use the table

Source	SS	D.F.	MS
\boldsymbol{X}_1	$SSR(\beta_1)$	k – r	$SSR(\beta_1)/(k-r)$
$\boldsymbol{X}_2 \boldsymbol{X}_1$	$SSR(m{eta}_2 m{eta}_1)$	r	$SSR(m{eta}_2 m{eta}_1)/r$
Error	SSE	n-1-k	MSE
Total	SST	<i>n</i> – 1	

• Takeaway message: When new variables X_2 are added to a regression of y on X_1 , the error sum of squares for the original regression is partitioned into a new, smaller error sum of squares, and the (sequential) regression sum of squares for X_2 .

This is similar to what we saw previously. It's justification is once again Cochran's theorem.

• Under the null hypothesis $H_0: \beta_2 = 0$

$$\frac{SSR(\boldsymbol{\beta}_2|(\boldsymbol{\beta}_1)}{\sigma^2} \sim \chi_r^2$$

and

$$F = \frac{MSR(\beta_2|\beta_1)}{MSE} = \frac{(SSE(\beta_1) - SSE(\beta_1, \beta_2))/r}{MSE} \sim F_{r, n-1-k}$$

and large F gives evidence against H_0 .

Explicit formula for the covariance matrix - no need to remember these

• From (3) and (4), the fitted values are

$$\hat{\boldsymbol{y}} = (\boldsymbol{H}_1 + \boldsymbol{H}_{2.1})\boldsymbol{y},$$

so the hat matrix is

.

$$\boldsymbol{H} = \boldsymbol{H}_1 + \boldsymbol{H}_{2.1}.$$

• The covariance matrix of $\hat{\beta}_2$ can be calculated from equation (3)

$$\begin{aligned}
\forall ar(\hat{\beta}_{2}) &= Var([X_{2}^{T}(I - H_{1})X_{2}]^{-1}X_{2}^{T}(I - H_{1})y) \\
&= [X_{2}^{T}(I - H_{1})X_{2}]^{-1}X_{2}^{T}(I - H_{1})\sigma^{2}I \\
&= (I - H_{1})X_{2}[X_{2}^{T}(I - H_{1})X_{2}]^{-1} \\
&= \sigma^{2}[X_{2}^{T}(I - H_{1})X_{2}]^{-1}
\end{aligned}$$

- We have used the trick of orthogonalizing the two sets of predictors, and this has allowed us to avoid inverting the X^TX matrix, which is difficult when it is not block diagonal.
- In this way we have also been able to obtain $Var(\hat{\beta}_2)$, which is the bottom right corner of $\sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$.
- By symmetry it follows that

$$Var(\hat{\boldsymbol{\beta}}_1) = \sigma^2 [\boldsymbol{X}_1^T (\boldsymbol{I} - \boldsymbol{H}_2) \boldsymbol{X}_1]^{-1}$$

Equivalence of the partial F test and the t test - know that they are equivalent

- The partial F test for H_0 : $\beta_k = 0$ is equivalent to the t test.
- To see this, note that

$$SSR(\beta_k|\beta_1) = \hat{\beta}_k x_k^T (I - H_1) y$$

= $\hat{\beta}_k^2 / (x_k^T (I - H_1) x_k)^{-1}$

SO

$$F = \frac{\hat{\beta}_k^2}{s^2 x_k^{\mathsf{T}} (I - H_1) x_k}$$

on 1 and n - 1 - k degrees of freedom.

We saw that

$$C_{k,k} = (x_k^{\mathsf{T}}(\boldsymbol{I} - \boldsymbol{H}_1)x_k)^{-1}$$

SO

$$F = \frac{\hat{\beta}_k^2}{(s\sqrt{C_{k,k}})^2} = \left(\frac{\beta_k}{s\sqrt{C_{k,k}}}\right)^2 = t^2$$

- From this we see that the usual t ratio for testing H_0 : $\beta_j = 0$, when squared, gives the F statistic.
- We also see that the *t* ratio assumes that all the other variables are included in the model first.
- In other words, when we look at the *t* statistic we must consider that all other variables have been included in the model.

Added variable plot

- When X_2 has only 1 column, the residuals at step 1 can be plotted against the residuals at step 2, showing exactly how the coefficient of the new variable, X_k , is obtained in the full model.
- This is called the added variable or partial leverage plot.
- The slope of the least squares line for this plot equals the coefficient of X_k.
- The correlation between e_1 and e_2 is called the partial correlation between y and X_k given X_1 .
- see the example using the trees dataset for an added variable plot. In that example, the plot looks linear, which suggests adding a linear function of x_2 to the model.
- On assignment 5, you're given the added variable plot, and asked to suggest which function of "age" - linear or quadratic - is most appropriate.