
Let X = (X 1,X 2) where X 1 is n × (k + 1 − r), X 2 is n × r and

β =

(
β1
β2

)
to conform, so β1 is (k + 1 − r)× 1 and β2 is r × 1.

The following notes:
justify the partial F test for testing H0 : β2 = 0 when the
regression model already includes X1.
prove the equivalence of the t test for a single variable, and
the associated F test
motivate the following sequential 3 step testing procedure:

1 Regress y on X 1 to get residuals e1
2 Regress X 2 on X 1 (each column) to get residuals e2
3 Regress e1 on e2 to get β̂2.



motivate the partitioning of the regression sum of squares, and
construction of the following ANOVA table

Source SS D.F. MS
X 1 SSR(β1) k − r SSR(β1)/(k − r)
X 2|X 1 SSR(β2|β1) r SSR(β2|β1)/r
Error SSE n − 1 − k MSE

Total SST n − 1

The F statistic for the test that H0 : β2 = 0, when the
variables in X 2 are entered into the regression after the
variables in X 1 is given by

F =
MSR(β2|β1)

MSE
=

(SSE (β1)− SSE (β1,β2))/r

MSE
∼ Fr ,n−1−k



In the case that X2 consists of a single regressor, the plot of e1
vs e2 is called an added variable plot. It is useful to diagnose
the functional form of the relationship between X2 and y given
that the variable in X1 are already included in the regression.
If a linear regression line is fit to the added variable plot, it can
be shown that:the slope of the line is the coefficient of X2 in
the multivariate regresson containing both X1 and X2.



Partial F test - Review - you are not responsible for
remembering the algebraic derivations

Suppose we have the model

y = X 1β1 + ϵ

and want to add the r predictors X 2.
For example, we may wish to test the hypotheses
H0 : β2 = 0
HA : β2j ̸= 0 for some j

Then we want to compare the fit of the reduced model under
H0 to that of the full model under H1.
In total there are k predictors, so X 1 consists of the column of
1’s and k − r columns of predictors.
Write X = (X 1,X 2) where X 1 is n× (k + 1 − r), X 2 is n× r

and β =

(
β1
β2

)
to conform, so β1 is (k + 1 − r)× 1 and β2

is r × 1.



Then the model containing X 1 and X 2 can be written

y = X 1β1 + X 2β2 + ϵ.



Case 1: Predictors orthogonal

If the new predictors X 2 are orthogonal to the old ones
XT

1 X 2 = 0 and

XTX =

(
XT

1 X 1 0
0 XT

2 X 2

)
which has inverse

(XTX )−1 =

(
(XT

1 X 1)
−1 0

0 (XT
2 X 2)

−1

)
.

The least squares estimates are(
β̂1
β̂2

)
=

(
(XT

1 X 1)
−1 0

0 (XT
2 X 2)

−1

)(
XT

1 y
XT

2 y

)
=

(
(XT

1 X 1)
−1XT

1 y
(XT

2 X 2)
−1XT

2 y

)
.



The estimates of β1 are unchanged and β2 is estimated
separately from the new columns.
The regression sum of squares is

SSR(β) = β̂
T
XTy − nȳ2

= β̂
T
1 XT

1 y − nȳ2 + β̂
T
2 XT

2 y
= SSR(β1) + SSR(β2)

and factors into two parts depending on X 1 and X 2 separately.
The extra regression sum of squares for X 2 given that X 1 is
already in the model can be written

SSR(β2) = β̂
T
2 XT

2 y
= yTX 2(XT

2 X 2)
−1XT

2 y
= yTH2y

where H2 = X 2(XT
2 X 2)

−1XT
2 is the projection onto the

subspace spanned by the columns of X 2 (which is orthogonal
to X 1).



Under the null hypothesis that β2 = 0

SSR(β2)

σ2 ∼ χ2
r

and
F =

MSR(β2)

MSRes
∼ Fr ,n−1−k

and large F gives evidence against H0.



Case 2: Predictors not orthogonal

When the new predictors are not orthogonal to the old ones,
XT

1 X 2 ̸= 0, the situation is more complicated.
The model can be written as before, and then manipulated to
create new predictors which are orthogonal

y = X 1β1 + X 2β2 + ϵ

= X 1β1 + (H1 + I − H1)X 2β2 + ϵ

= X 1θ + (I − H1)X 2β2 + ϵ,

where
H1 = X 1(XT

1 X 1)
−1XT

1

is the projection on the subspace spanned by the predictors
X 1, and

θ = β1 + (XT
1 X 1)

−1XT
1 X 2β2 (1)

is a new parameter created from β1 and β2.



The matrices X 1 and (I −H1)X 2 are orthogonal, so estimates
of θ and β2 can be obtained separately, as above:

θ̂ = (XT
1 X 1)

−1XT
1 y (2)

and
β̂2 = [XT

2 (I − H1)X 2]
−1XT

2 (I − H1)y . (3)

Rearranging (1) gives

β̂1 = θ̂ − (XT
1 X 1)

−1XT
1 X 2β̂2

or
β̂1 = [XT

1 X 1]
−1XT

1 (y − X 2β̂2). (4)

From (3) we see that β̂2 is the result of regressing one set of
residuals, (I − H1)y on another (I − H1)X 2.



The latter is a matrix of residuals obtained by regressing each
column of X 2 on X 1.
It contains the information from X 2 not already explained by
X 1.



Example:
Suppose that β1 = (β0, β1)

T and β2 has just one element β2.
That is, the first regression is y = β0 + β1x1 + e, and we are
looking at the effect of adding a second variable x2 to the model.
The matrix X 1 consists of a column of 1’s, and a column
containing data on x1. X 2 has just one column, the data on x2.
In this case:

1 θ̂ are the least squares estimates for the model
y = θ0 + θ1x1 + e. Call them θ̂0 and θ̂1.

1 (XT
1 X 1)

−1XT
1 X 2 are the regression coefficients from the

model x2 = γ0 + γ1x1 + e. Call them γ̂0 and γ̂1.
1 β̂2 is the least squares estimator from the regression of

(I − H1)y on (I − H1)X 2, which does NOT include an
intercept. Call the estimate α̂.
Then the line before (4) says that
β̂1 = (β̂0, β̂1)

T = θ̂ − α̂γ̂ = (θ̂0 − α̂γ̂0, θ̂1 − α̂γ̂1)
β̂2 was given by (3).
Together, these are β̂ = (β̂0, β̂1, β̂2)

T .



example, continued

data=read.csv(
"http://chase.mathstat.dal.ca/~bsmith/stat3340/Data/NFLdata.csv")
attach(data)
lm1=lm(y~x1)
e1=resid(lm1)
coef(lm1) #theta hat in notes
> (Intercept) x1
-4.330015011 0.005352206

lm2=lm(x2~x1)
e2=resid(lm2)
coef(lm2)
> > coef(lm2)

(Intercept) x1
2227.55824645 -0.04755155



example, continued

lm3=lm(e1~e2-1)
b2=coef(lm3) #alpha hat in notes, which is betahat_2 in full model
b0=coef(lm1)[1]-coef(lm3)*coef(lm2)[1] #gives bethat_0
b1=coef(lm1)[2]-coef(lm3)*coef(lm2)[2] #gives bethat_1
c(b0,b1,b2)

(Intercept) x1 e2
-12.176470327 0.005519703 0.003522447
>

> > #check by fitting full model
lm(y~x1+x2,data=data)

> Call: lm(formula = y ~ x1 + x2, data = data)

Coefficients:
(Intercept) x1 x2
-12.176470 0.005520 0.003522



This verifies the 3 step procedure for this particular example.
See the "trees" example for another case when adding a single
variable to a simple linear regression.
The added variable plot is a plot of the first set of residuals
against the second. It is used to suggest the functional form of
x2 to add.



Know how to carry out the 3 step procedure - see trees
example

Regression on both sets of variables can be thought of as a
sequential three step procedure

1 Regress y on X 1 to get residuals e1 = (I − H1)y and
estimates θ̂.

2 Regress X 2 on X 1 (each column) to get residuals
e2 = (I − H1)X 2.

3 Regress e1 on e2 to get β̂2 as in (3) above and solve for β̂1 as
in (4) above.



Partitioning the regression sum of squares

Step 1 gives SSR(β1), the amount explained by X 1 in the
regression of y on X 1, and

SST = SSR(β1) + SSE (β1)

.
In the ANOVA table for the regression of y on X 1 and X 2,
SSR(β1) is the regression SS entry for the terms X 1.
Step 3 gives SSR(β2|β1), the regression SS for X 2 given that
X 1 is already accounted for. This is the regression SS entry in
the ANOVA table for the regression of y on X 1 and X 2.



When additional variables X 2 are added to a reduced model
containing X 1, the error SS in the reduced model is
partitioned into a reduced error SS for the full model, plus the
regression SS for the variables added.
Equivalently, the regression SS for the terms added is the
difference in error SS of the "reduced" and "full" models.

SSR(β2|β1) = SSE (β1)− SSE (β1,β2)



example, continued

>lm1=lm(y~x1)
> anova(lm1)
Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)
x1 1 115.07 115.07 14.119 0.000877 ***
Residuals 26 211.90 8.15

> lmbig=lm(y~x1+x2)
> anova(lmbig)
Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)
x1 1 115.068 115.068 22.378 7.492e-05 ***
x2 1 83.343 83.343 16.208 0.0004635 ***
Residuals 25 128.553 5.142



SSE (β1) = SSEreduced = 211.90
SSE (β1, β2) = SSEfull = 128.553
SSR(β2|β1) = 211.90 − 128.553 ≈ 83.343



Equivalently, the total regression sum of squares (when both
X 1 and X 2 are included), is

SSR(β1,β2) = SSR(β1) + SSR(β2|β1)

where the extra sum of squares for regression explained by X 2
given that X 1 is in the model is

SSR(β2|β1) = β̂
T
2 XT

2 (I − H1)y = yTH2.1y

with

H2.1 = (I − H1)X 2[XT
2 (I − H1)X 2]

−1XT
2 (I − H1)



H2.1 is the projection onto the component of the subspace
spanned by X 2 which is orthogonal to the subspace spanned
by the columns of X 1.
The analysis above shows that the partition of the sum
of squares into two parts depends on the order in which
the variables are added into the model when the
columns of X 1 are not orthogonal to the columns of X 2

The numerator of the F test of the null hypothesis
H0 : β2 = 0 is

(SSE (β1)− SSE (β1,β2))/r = SSR(β2|β1)/r

where the regression sum of squares is for those terms which
were added last.
If X 1 and X 2 are orthogonal, (I − H1)X 2 = X 2 so that
SSR(β2|β1) = SSR(β2), and the order of inclusion doesn’t
matter.



ANOVA table showing the decomposition of SSR - know
how to construct/use the table

Source SS D.F. MS
X 1 SSR(β1) k − r SSR(β1)/(k − r)
X 2|X 1 SSR(β2|β1) r SSR(β2|β1)/r
Error SSE n − 1 − k MSE

Total SST n − 1
Takeaway message: When new variables X2 are added to a
regression of y on X1, the error sum of squares for the original
regression is partitioned into a new, smaller error sum of
squares, and the (sequential) regression sum of squares for X2.



Justification for the partial F test

This is similar to what we saw previously. It’s justification is once
again Cochran’s theorem.

Under the null hypothesis H0 : β2 = 0

SSR(β2|(β1)

σ2 ∼ χ2
r

and

F =
MSR(β2|β1)

MSE
=

(SSE (β1)− SSE (β1,β2))/r

MSE
∼ Fr ,n−1−k

and large F gives evidence against H0.



Explicit formula for the covariance matrix - no need to
remember these

From (3) and (4), the fitted values are

ŷ = (H1 + H2.1)y ,

so the hat matrix is

H = H1 + H2.1.

The covariance matrix of β̂2 can be calculated from equation
(3)

Var(β̂2) = Var([XT
2 (I − H1)X 2]

−1XT
2 (I − H1)y)

= [XT
2 (I − H1)X 2]

−1XT
2 (I − H1)σ

2I
(I − H1)X 2[XT

2 (I − H1)X 2]
−1

= σ2[XT
2 (I − H1)X 2]

−1

.



We have used the trick of orthogonalizing the two sets of
predictors, and this has allowed us to avoid inverting the XTX
matrix, which is difficult when it is not block diagonal.
In this way we have also been able to obtain Var(β̂2), which is
the bottom right corner of σ2(XTX )−1.
By symmetry it follows that

Var(β̂1) = σ2[XT
1 (I − H2)X 1]

−1



Equivalence of the partial F test and the t test - know that
they are equivalent

The partial F test for H0 : βk = 0 is equivalent to the t test.
To see this, note that

SSR(βk |β1) = β̂kx
T
k (I − H1)y

= β̂2
k/(x

T
k (I − H1)xk)

−1

so

F =
β̂2
k

s2xTk (I − H1)xk

on 1 and n − 1 − k degrees of freedom.
We saw that

Ck,k = (xTk (I − H1)xk)
−1

so

F =
β̂2
k

(s
√

Ck,k)2
=

(
βk

s
√
Ck,k

)2

= t2



From this we see that the usual t ratio for testing H0 : βj = 0,
when squared, gives the F statistic.
We also see that the t ratio assumes that all the other
variables are included in the model first.
In other words, when we look at the t statistic we must
consider that all other variables have been included in the
model.



Added variable plot

When X 2 has only 1 column, the residuals at step 1 can be
plotted against the residuals at step 2, showing exactly how
the coefficient of the new variable, Xk , is obtained in the full
model.
This is called the added variable or partial leverage plot.
The slope of the least squares line for this plot equals the
coefficient of Xk .
The correlation between e1 and e2 is called the partial
correlation between y and Xk given X 1.
see the example using the trees dataset for an added variable
plot. In that example, the plot looks linear, which suggests
adding a linear function of x2 to the model.
On assignment 5, you’re given the added variable plot, and
asked to suggest which function of "age" - linear or quadratic
- is most appropriate.


