
Case Deletion Diagnostics

How do the estimated β’s and/or estimated predictions ŷj
change when the i ’th case is deleted?

Do some cases strongly affect the fit?



Summary

the deleted residual, e(i), is the residual using the prediction
of E [yi ] without case i

e(i) = ei
1−hii

when the leverage is high, the deleted residual will be inflated
when the leverage is small, the deleted residual is close to the
original residual.

variance of the deleted residual: σ2/(1− hii )

prediction error sum of squares: PRESS =
∑n

i=1 e2(i)

R2 for prediction: R2
prediction = 1− PRESS

SST

deleted residual sum of squares: SSE(i) = SSE − e2i
1−hii

deleted variance estimate: s2(i) =
SSE(i)

n−k−2 .



Studentized residuals

the externally studentized residual is the deleted residual
standardized with the deleted standard error

ti =
ei/(1− hii)

s(i)/
√

1− hii
=

ei
s(i)
√

1− hii
.

Cases with standardized residual greater than 2 in absolute
value should be examined by the data analyst.

Externally studentized residuals are preferred to the basic
residuals yi − ŷi , as the studentized residuals are typically best
at revealing cases which strongly influenced the fit.



Case Deletion Diagnostics

the deleted estimate of β

β̂(i) = β̂ − (XTX)−1xi
ei

1− hii
.

Cook’s distance:

Di =
1

(k + 1)s2
(β̂−β̂(i))

TXTX(β̂−β̂(i)) =
(ŷ(i) − ŷ)

′
(ŷ(i) − ŷ)

(k + 1)s2

measures the change in the estimate of β when the ith case is
deleted
and where ŷ(i) are the predicted values based on all of the
observations but the i ’th, also measures the change in
predicted values
the usual diagnostic is to flag an observation for which
Di > F (.5, p, n − p) ≈ 1



Example: the wood beam data

The the R function influence.measures(lmoutput) returns
leverage values, Cook’s distance, DFBETA’s and DFFIT’s.

externally and internally studentized residuals are obtained for
the linear model using rstudent(woodlm.out) and
rstandard(woodlm.out).

Also shown are the leverage values,

and deleted estimates of σ, obtained using
lm.influence(woodlm.out)$sigma.



> cbind(rstudent(woodlm.out),rstandard(woodlm.out),

hat(model.matrix(woodlm.out)),lm.influence(woodlm.out)

$sigma)

Case external internal leverage s_(i)

1 -3.25407928 -2.11381331 0.4178935 0.1789230

2 0.26672584 0.28640388 0.2418666 0.2957614

3 0.18235097 0.19641804 0.4172806 0.2966886

4 -0.96116898 -0.96644039 0.6043904 0.2769510

5 -1.05851279 -1.04952172 0.2521824 0.2731008

6 2.20302617 1.76924218 0.1478688 0.2212052

7 0.50868523 0.53796494 0.2616385 0.2912946

8 0.43572812 0.46336607 0.1540321 0.2929114

9 0.26975149 0.28961404 0.3155106 0.2957218

10 -0.03324377 -0.03590407 0.1873364 0.2974822

Note that cases 1 and 6 have large externally studentized
residuals.

These are also the cases with the smallest deleted estimates of
σ.



Cook’s distance values are as follows.

> cooks.distance(woodlm.out)

1 2 3 4

1.069240e+00 8.723020e-03 9.208950e-03 4.756415e-01

5 6

1.238171e-01 1.810604e-01

7 8 9 10

3.418372e-02 1.303120e-02 1.288740e-02 9.905523e-05

Cases 1, 4 and 6 give the largest values, and case 1 is above
the threshhold.



The command lm.influence(woodlm.out)$coefficients returns the
elements of β̂ − β̂(i)

> lm.influence(woodlm)$coefficients:

(Intercept) SG MC

1 2.7098 -1.7723 -0.1932

2 0.0458 0.0822 -0.0078

3 -0.0686 0.1887 -0.0018

4 -2.1091 1.6955 0.1242

5 -0.3672 -0.1320 0.0404

6 -0.6423 0.7481 0.0329

7 0.1203 -0.3082 0.0050

8 -0.1529 0.0642 0.0137

9 0.1669 -0.2550 -0.0031

10 0.0129 -0.0030 -0.0013



To get the deleted parameter estimates

> wood.lm$coef-influence(wood.lm)$coefficients

(Intercept) SG MC

1 7.5917355 10.2670553 -0.07314195

2 8.4489312 -0.3485564 10.30936123

3 -0.1976911 10.1128150 8.49650349

4 12.4106577 6.7992142 -0.39054922

5 8.8619301 -0.1343679 10.26112696

6 0.3759702 9.5534004 8.46184770

7 10.1812517 8.8028925 -0.27133686

8 8.6475688 -0.3305508 10.28786646

9 -0.4332042 10.5565539 8.49784592

10 10.2886005 8.4976812 -0.26505116

> lm(formula = Strength ~ SG + MC,data=data[-1,])

Coefficients:

(Intercept) SG MC

7.59174 10.26706 -0.07314



In case 1, the intercept is reduced, the slope for SG is increased,
and the coefficient for MC is greatly reduced.

In case 4, the intercept is increased, the slope for SG is decreased,
and the slope for MC is greatly increased

For case 6, the slope for SG is reduced.



The following plot shows Cook’s statistic in the space of predictors.

The largest Cook’s statistic is not the furthest from the centroid.
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Cook’s Statistics for Wood Data



The following plot shows the deleted parameter estimates β̂(i) with
the value of Cook’s distance superimposed.

Cook’s D for Wood Data
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We previously discussed adding a squared term in moisture content.

The externally and internally studentized residuals, leverage values,
deleted estimates of s and Cook’s statistic are shown below.

Note that the largest residual is for case 7, which also gives the
smallest deleted estimate of σ.

The largest value of Cook’s distance is case 1, but its value is
much less than 1.



> cbind(rstudent(woodlm2.out),rstandard(woodlm2.out),

hat(model.matrix(woodlm2.out)),lm.influence(woodlm2.

out)$sigma,cooks.distance(woodlm2.out))

Case external internal leverage sigma Cook's
1 -0.8145812 -0.8384283 0.7657191 0.11170541 0.574386783

2 0.7064363 0.7379122 0.2418690 0.11336379 0.043429549

3 1.2342390 1.1836947 0.4241376 0.10408379 0.257992667

4 -0.3953950 -0.4265168 0.6469168 0.11707054 0.083326597

5 -1.5773574 -1.4119560 0.2836093 0.09714797 0.197311706

6 -0.1984146 -0.2165016 0.6163116 0.11842141 0.018822789

7 2.6278156 1.8655129 0.2662545 0.07704528 0.315709744

8 -0.7053329 -0.7368641 0.2304277 0.11337985 0.040644337

9 -0.3525067 -0.3814410 0.3371019 0.11743638 0.018497333

10 -0.1965493 -0.2144819 0.1876526 0.11843007 0.002656649



Derivations

A trick is to delete the ith case by adding its indicator, ui as a new
predictor in the model!

Let uij = 1 for j = i and uij = 0 for j 6= i .

Consider the expanded model

y = Xβ + uiγ + ε.

This model gives a separate mean for the ith case

E [yi ] = β0 + β1xi1 + . . .+ βkxik + γ = xTi β + γ.

The sum of squares function is

SSE (β, γ) =
n∑
j 6=i

(yj − xTj β)2 + (yi − xTi β − γ)2.



The deleted estimate for β minimizes the first term, and is based
on all cases but the ith.

Denote these case deleted estimates β̂(i).

The estimate for γ makes the second term zero, and is

γ̂ = yi − xi
T β̂(i)

the deleted residual, e(i), formed using the prediction of E [yi ]
without case i .



Using the theory developed for adding a column to the X matrix,
the deleted residual is

γ̂ = [uTi (I−H)ui ]
−1uTi (I−H)y

=
ei

1− hii
= e(i).

That is, the deleted residual is just the original residual divided by
one minus the leverage value

when the leverage is high, the deleted residual will be inflated

when the leverage is small, the deleted residual is close to the
original residual.



Deleted residuals are also called PRESS residuals, and are used to
compute the prediction error sum of squares

PRESS =
n∑

i=1

e2(i)

and the R2 for prediction

R2
prediction = 1− PRESS

SST
.

Using our theory from before on adding variables to a model, we
can determine that the deleted estimates of β are

β̂(i) = (XTX)−1XT (y − ui
ei

1− hii
)

= β̂ − (XTX)−1xi
ei

1− hii
.



The extra sum of squares for regression explained by the indicator is

SSR(γ|β) = yT (I−H)ui [u
T
i (I−H)ui ]

−1uT
i (I−H)y

=
e2i

1− hii
.

The increase in SSR is offset by a decrease in SSE so the deleted
residual sum of squares is

SSE(i) = SSE −
e2i

1− hii
.

Dividing this by (n − 1)− (k + 1) = n − k − 2 gives the deleted
variance estimate s2(i).

The variance of the deleted residual is σ2/(1− hii).



Standardizing the deleted residual using the deleted standard error
gives the externally studentized residual

ti =
ei/(1− hii )

s(i)/
√

1− hii
=

ei
s(i)
√

1− hii
.

This differs from the internally studentized residual

ri =
ei

s
√

1− hii

only through the estimates of standard error.

Any case with standardized residual greater than 2 should be
examined.

The externally studentized residuals may reveal a case which has
strongly influenced the fit.



Case Deletion Diagnostics

There are numerous case deletion diagnostics which attempt to
determine whether a case has strongly influenced the results.

The most commonly used is Cook’s distance

Di =
1

(k + 1)s2
(β̂ − β̂(i))

TXTX(β̂ − β̂(i))

=
1

(k + 1)s2
(ŷ − ŷ(i))

T (ŷ − ŷ(i))

=
e2i

(k + 1)s2
hii

(1− hii)2

=
e2(i)

(k + 1)s2

Di measures the change in the estimates of β and in the estimate
of E (y) = Xβ when the ith case is deleted.



It also the scaled product of the squared deleted residual and the
leverage value.

It will be large when the ith case has a large deleted residual and
also large leverage.

It is often compared to F (.5, p, n − p), which is close to 1. (Recall
p = k + 1.)


