- How do the estimated β's and/or estimated predictions ŷ_j change when the *i*'th case is deleted?
- Do some cases strongly affect the fit?

- the **deleted residual**, $e_{(i)}$, is the residual using the prediction of $E[y_i]$ without case *i*
- $e_{(i)} = \frac{e_i}{1-h_{ii}}$
 - when the leverage is high, the deleted residual will be inflated
 - when the leverage is small, the deleted residual is close to the original residual.
- variance of the deleted residual: $\sigma^2/(1-h_{ii})$
- prediction error sum of squares: $PRESS = \sum_{i=1}^{n} e_{(i)}^2$
- R^2 for prediction: $R^2_{prediction} = 1 \frac{PRESS}{SST}$
- deleted residual sum of squares: $SSE_{(i)} = SSE \frac{e_i^2}{1 h_{ii}}$
- deleted variance estimate: $s_{(i)}^2 = \frac{SSE_{(i)}}{n-k-2}$.

• the *externally studentized* residual is the deleted residual standardized with the deleted standard error

$$t_i = rac{e_i/(1-h_{ii})}{s_{(i)}/\sqrt{1-h_{ii}}} = rac{e_i}{s_{(i)}\sqrt{1-h_{ii}}}$$

- Cases with standardized residual greater than 2 in absolute value should be examined by the data analyst.
- Externally studentized residuals are preferred to the basic residuals y_i - ŷ_i, as the studentized residuals are typically best at revealing cases which strongly influenced the fit.

Case Deletion Diagnostics

• the deleted estimate of eta

$$\hat{\boldsymbol{\beta}}_{(i)} = \hat{\boldsymbol{\beta}} - (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i \frac{e_i}{1 - h_{ii}}.$$

Cook's distance:

$$D_i = rac{1}{(k+1)s^2} (\hat{eta} - \hat{eta}_{(i)})^{ au} \mathbf{X}^{ au} \mathbf{X} (\hat{eta} - \hat{eta}_{(i)}) = rac{(\hat{f y}_{(i)} - \hat{f y})^{'}(\hat{f y}_{(i)} - \hat{f y})}{(k+1)s^2}$$

- measures the change in the estimate of β when the *i*th case is deleted
- and where $\hat{\mathbf{y}}_{(i)}$ are the predicted values based on all of the observations but the *i*'th, also measures the change in predicted values
- the usual diagnostic is to flag an observation for which $D_i > F(.5, p, n-p) \approx 1$

- The the R function *influence.measures(Imoutput)* returns leverage values, Cook's distance, DFBETA's and DFFIT's.
- externally and internally studentized residuals are obtained for the linear model using *rstudent(woodlm.out)* and *rstandard(woodlm.out)*.
- Also shown are the leverage values,
- and deleted estimates of σ, obtained using *lm.influence(woodlm.out)\$sigma*.

> cbind(rstudent(woodlm.out),rstandard(woodlm.out), hat(model.matrix(woodlm.out)),lm.influence(woodlm.out) \$sigma)

Cas	se	external	internal	leverage	s_(i)
1	-3	.25407928	-2.11381331	0.4178935	0.1789230
2	0	.26672584	0.28640388	0.2418666	0.2957614
3	0	.18235097	0.19641804	0.4172806	0.2966886
4	-0	.96116898	-0.96644039	0.6043904	0.2769510
5	-1	.05851279	-1.04952172	0.2521824	0.2731008
6	2	.20302617	1.76924218	0.1478688	0.2212052
7	0	.50868523	0.53796494	0.2616385	0.2912946
8	0	.43572812	0.46336607	0.1540321	0.2929114
9	0	.26975149	0.28961404	0.3155106	0.2957218
10	-0	.03324377	-0.03590407	0.1873364	0.2974822

- Note that cases 1 and 6 have large externally studentized residuals.
- These are also the cases with the smallest deleted estimates of

- Cook's distance values are as follows.
- - Cases 1, 4 and 6 give the largest values, and case 1 is above the threshhold.

The command *lm.influence(woodlm.out)*\$coefficients returns the elements of $\hat{\beta} - \hat{\beta}_{(i)}$

> lm.influence(woodlm)\$coefficients:

	(Intercept)	SG	MC
1	2.7098	-1.7723	-0.1932
2	0.0458	0.0822	-0.0078
3	-0.0686	0.1887	-0.0018
4	-2.1091	1.6955	0.1242
5	-0.3672	-0.1320	0.0404
6	-0.6423	0.7481	0.0329
7	0.1203	-0.3082	0.0050
8	-0.1529	0.0642	0.0137
9	0.1669	-0.2550	-0.0031
10	0.0129	-0.0030	-0.0013

• To get the deleted parameter estimates

>	wood.lm\$coef-	-influence(w	vood.lm)\$coefficient	s
	(Intercept)	SG	MC	
1	7.5917355	10.2670553	-0.07314195	
2	8.4489312	-0.3485564	10.30936123	
3	-0.1976911	10.1128150	8.49650349	
4	12.4106577	6.7992142	-0.39054922	
5	8.8619301	-0.1343679	10.26112696	
6	0.3759702	9.5534004	8.46184770	
7	10.1812517	8.8028925	-0.27133686	
8	8.6475688	-0.3305508	10.28786646	
9	-0.4332042	10.5565539	8.49784592	
10	10.2886005	8.4976812	-0.26505116	

> lm(formula = Strength ~ SG + MC,data=data[-1,])
Coefficients:
 (Intercept) SG MC

7.59174 10.26706 -0.07314

- In case 1, the intercept is reduced, the slope for *SG* is increased, and the coefficient for *MC* is greatly reduced.
- In case 4, the intercept is increased, the slope for *SG* is decreased, and the slope for *MC* is greatly increased
- For case 6, the slope for SG is reduced.

- The following plot shows Cook's statistic in the space of predictors.
- The largest Cook's statistic is not the furthest from the centroid.

• The following plot shows the deleted parameter estimates $\hat{\beta}_{(i)}$ with the value of Cook's distance superimposed.

- We previously discussed adding a squared term in *moisture content*.
- The externally and internally studentized residuals, leverage values, deleted estimates of *s* and Cook's statistic are shown below.
- Note that the largest residual is for case 7, which also gives the smallest deleted estimate of σ .
- The largest value of Cook's distance is case 1, but its value is much less than 1.

> cbind(rstudent(woodlm2.out),rstandard(woodlm2.out), hat(model.matrix(woodlm2.out)),lm.influence(woodlm2. out)\$sigma,cooks.distance(woodlm2.out))

Case external internal leverage sigma Cook's -0.8145812 -0.8384283 0.7657191 0.11170541 0.5743867831 2 0.7064363 0.7379122 0.2418690 0.11336379 0.043429549 3 1.2342390 1.1836947 0.4241376 0.10408379 0.257992667 4 -0.3953950 -0.4265168 0.6469168 0.11707054 0.0833265975 -1.5773574 -1.4119560 0.2836093 0.09714797 0.1973117066 -0.1984146 -0.2165016 0.6163116 0.11842141 0.0188227897 2.6278156 1.8655129 0.2662545 0.07704528 0.315709744 8 -0.7053329 -0.7368641 0.2304277 0.11337985 0.040644337-0.3525067 -0.3814410 0.3371019 0.11743638 0.018497333 9 10 -0.1965493 -0.2144819 0.1876526 0.11843007 0.002656649

Derivations

• A trick is to delete the *i*th case by adding its indicator, **u**_{*i*} as a new predictor in the model!

• Let
$$u_{ij} = 1$$
 for $j = i$ and $u_{ij} = 0$ for $j \neq i$.

• Consider the expanded model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}_i\boldsymbol{\gamma} + \boldsymbol{\epsilon}.$$

• This model gives a separate mean for the *i*th case

$$E[y_i] = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \gamma = \mathbf{x}_i^T \boldsymbol{\beta} + \gamma.$$

• The sum of squares function is

$$SSE(\beta,\gamma) = \sum_{j\neq i}^{n} (y_j - \mathbf{x}_j^T \beta)^2 + (y_i - \mathbf{x}_i^T \beta - \gamma)^2.$$

- The deleted estimate for β minimizes the first term, and is based on all cases but the *i*th.
- Denote these case deleted estimates $\hat{\beta}_{(i)}$.
- $\bullet\,$ The estimate for $\gamma\,$ makes the second term zero, and is

$$\hat{\gamma} = y_i - \mathbf{x_i}^T \hat{\boldsymbol{\beta}}_{(i)}$$

the *deleted residual*, $e_{(i)}$, formed using the prediction of $E[y_i]$ without case *i*.

 Using the theory developed for adding a column to the X matrix, the deleted residual is

$$\hat{\gamma} = [\mathbf{u}_i^T (\mathbf{I} - \mathbf{H}) \mathbf{u}_i]^{-1} \mathbf{u}_i^T (\mathbf{I} - \mathbf{H}) \mathbf{y}$$
$$= \frac{e_i}{1 - h_{ii}} = e_{(i)}.$$

- That is, the deleted residual is just the original residual divided by one minus the leverage value
 - when the leverage is high, the deleted residual will be inflated
 - when the leverage is small, the deleted residual is close to the original residual.

• Deleted residuals are also called PRESS residuals, and are used to compute the prediction error sum of squares

$$PRESS = \sum_{i=1}^{n} e_{(i)}^{2}$$

and the R^2 for prediction

$$R_{prediction}^2 = 1 - rac{PRESS}{SST}$$

 Using our theory from before on adding variables to a model, we can determine that the deleted estimates of β are

$$\hat{\boldsymbol{\beta}}_{(i)} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}(\mathbf{y} - \mathbf{u}_{i}\frac{e_{i}}{1 - h_{ii}})$$
$$= \hat{\boldsymbol{\beta}} - (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{x}_{i}\frac{e_{i}}{1 - h_{ii}}.$$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

The extra sum of squares for regression explained by the indicator is

$$SSR(\gamma|\beta) = \mathbf{y}^{T}(\mathbf{I} - \mathbf{H})u_{i}[u_{i}^{T}(\mathbf{I} - \mathbf{H})u_{i}]^{-1}u_{i}^{T}(\mathbf{I} - \mathbf{H})\mathbf{y}$$
$$= \frac{e_{i}^{2}}{1 - h_{ii}}.$$

The increase in *SSR* is offset by a decrease in *SSE* so the deleted residual sum of squares is

$$SSE_{(i)} = SSE - \frac{e_i^2}{1 - h_{ii}}.$$

Dividing this by (n-1) - (k+1) = n - k - 2 gives the deleted variance estimate $s_{(i)}^2$.

The variance of the deleted residual is $\sigma^2/(1 - h_{ii})$.

・ロト・御ト・言と・言と、 言・ ろんの

• Standardizing the deleted residual using the deleted standard error gives the *externally studentized* residual

$$t_i = rac{e_i/(1-h_{ii})}{s_{(i)}/\sqrt{1-h_{ii}}} = rac{e_i}{s_{(i)}\sqrt{1-h_{ii}}}$$

• This differs from the internally studentized residual

$$r_i = rac{e_i}{s\sqrt{1-h_{ii}}}$$

only through the estimates of standard error.

- Any case with standardized residual greater than 2 should be examined.
- The externally studentized residuals may reveal a case which has strongly influenced the fit.

Case Deletion Diagnostics

- There are numerous *case deletion diagnostics* which attempt to determine whether a case has strongly influenced the results.
- The most commonly used is Cook's distance

$$D_{i} = \frac{1}{(k+1)s^{2}} (\hat{\beta} - \hat{\beta}_{(i)})^{T} \mathbf{X}^{T} \mathbf{X} (\hat{\beta} - \hat{\beta}_{(i)})$$

$$= \frac{1}{(k+1)s^{2}} (\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(i)})^{T} (\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(i)})$$

$$= \frac{e_{i}^{2}}{(k+1)s^{2}} \frac{h_{ii}}{(1-h_{ii})^{2}}$$

$$= \frac{e_{(i)}^{2}}{(k+1)s^{2}}$$

• D_i measures the change in the estimates of β and in the estimate of $E(\mathbf{y}) = \mathbf{X}\beta$ when the *i*th case is deleted.

- It also the scaled product of the squared deleted residual and the leverage value.
- It will be large when the *i*th case has a large deleted residual and also large leverage.
- It is often compared to F(.5, p, n-p), which is close to 1. (Recall p = k + 1.)