
Multiple regression model:

y = Xβ + ϵ.

• Least squares estimator:

β̂ = (XTX)−1XTy.

• The Hat matrix is H = X(XTX)−1XT

• predicted values are ŷ = Hy = Xβ̂

• residuals are y − ŷ

• if the assumptions of the regression model hold,
then

– the elements of β̂ are normally distributed

– E(β̂) = β

– Cov(β̂) = σ2(XTX)−1

• estimate of σ2

σ̂2 = MSE =
SSE

n− (k + 1)
=

SSE

n− p

• a 100(1−α)% confidence interval for βj is given
by

β̂j ± tα/2,n−pσ̂
√
Cj,j

where Cj,j is the j + 1’th diagonal element of

(XTX)−1.

• a 100(1 − α)% confidence interval for the mean
of y when x = x0 is

ŷ0 ± tα/2,n−pσ̂

√
xT
0 (X

TX)−1x0

• a 100(1 − α)% prediction interval for a future
value of y when x = x0 is

ŷ0 ± tα/2,n−pσ̂

√
1 + xT

0 (X
TX)−1x0

• Simultaneous confidence intervals: if making m
intervals, replace α by α/m.

Sums of squares

• 1 is a vector of 1’s of length n

• J = 11T

• J/n = 1(1T1)−11T

• Residuals are y − ŷ = (I −H)y.

• The matrices H, I−H,J/n, I−J/n, and H −
J/n are projection matrices.

• Projection matrices are symmetric and idempo-
tent (which means that when you multiply the
matrix by itself, you get back the orignal ma-
trix).

• Matrix expressions for the sums of squares.

SST = yT (I − J/n)y = yTy − nȳ2

SSR = yT (H − J/n)y = ŷT ŷ − nȳ2

= β̂
T
XTy − nȳ2

SSE = yT (I −H)y

= (y −Xβ̂)T (y −Xβ̂)

= yTy − β̂
T
XTy

Anova table

• with n observations, k predictors, p = k+1, the
Anova table is given by:

Source SS df MS F
Regression SSR k MSR=SSR/k MSR/MSE
Residual SSE n-p MSE=SSE/(n-p)
Total SST n-1

• The proportion of the variation in y explained
by the k predictor variables is R2 = SSR/SST .
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Means, variances and covariances

• Expectation of a linear combination of random
variables.

E

[
n∑

i=1

aiYi

]
=

n∑
i=1

aiE[Yi].

• Variance of a general linear combination of ran-
dom variables.

V ar

[
n∑

i=1

aiYi

]
=

n∑
i=1

n∑
j=1

aiajCov[Yi, Yj ]

=

n∑
i=1

a2iV ar[Yi] + 2
∑ n∑

j>i

aiajCov[Yi, Yj ].

• If the Yi are uncorrelated, then

V ar

[
n∑

i=1

aiYi

]
=

n∑
i=1

a2iV ar[Yi].

• Covariance of two linear combinations.

Cov(

n∑
i=1

aiYi,

n∑
i=1

biYi) =
∑
i

∑
j

aibjCov(Yi, Yj)

=
∑
i

aibiV ar(Yi) +
∑
i ̸=j

aibjCov(Yi, Yj).

Means and covariances of random vectors

• If A is a matrix of constants and c a vector of
constants, and Y is a random vector with mean
vector µ and covariance matrix V , then

E(AY + c) = Aµ+ c

V ar(AY + c) = AV ar(Y )AT = AV AT .

• Suppose Cov(X,Y ) = C. Let A and B be non
random matrices and c and d non random vec-
tors. Then

Cov(AX + c,BY + d) = ACBT .

• The expectation of the quadratic form Y TAY
is

E(Y TAY ) = µTAµ+ tr(V A)

• Suppose thatA andB are matrices of constants,
c is a vector of constants, X and Y are in-
dependent random vectors with covariance ma-
trices ΣX and ΣY respectively. Then the co-
variance matrix of AX + BY + c is given by
AΣXAT + BΣY BT .

Indicator of the event A: let I(A) = 1 if A
occurs, and I(A) = 0 otherwise.
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Partial F test

y = X1β1 +X2β2 + ϵ

H1 = X1(X
T
1 X1)

−1XT
1

H2.1 = (I−H1)X2[X
T
2 (I−H1)X2]

−1XT
2 (I−H1)

To test H0 : β2 = 0 against the β2 ̸= 0, use:

F =
MSR(β2|β1)

MSE
=

(SSE(β1)− SSE(β1,β2))/r

MSE

ANOVA table

Source SS df MS
X1 SSR(β1) k − r SSR(β1)/(k − r)
X2|X1 SSR(β2|β1) r SSR(β2|β1)/r
Error SSE n− p MSE
Total SST n− 1

3 step procedure
Regression on both sets of variables can be thought

of as a sequential three step procedure:

1. Regress y onX1 to get residuals e1 = (I−H1)y
and estimates θ̂.

2. Regress X2 on X1 (each column) to get residu-
als e2 = (I −H1)X2.

3. Regress e1 on e2 to get β̂2, and then solve for
β̂1.

General linear hypothesis
to test H0 : Tβ = c, vs HA : Tβ ̸= c, use:

F =
(T β̂ − c)

′
[
T (X

′
X)−1T

′
]−1

(T β̂ − c)/r

SSEfull/(n− p)

Variance stabilizing transform

If Y has mean µY and variance σ2
Y , then a function

h(Y ) has approximate mean h(µY ) and variance ap-
proximately equal to (h′(µY ))

2σ2
Y

Generalized least squares

if y = Xβ + ϵ, with E(ϵ) = 0 and Cov(ϵ) = σ2V ,
the generalized least squares estimator is given by

β̂ = (XTV −1X)−1XTV −1y

Model selection

For multiple linear regression, a reasonable model se-
lection strategy is to choose that model which maxi-

mizes R2
adj = 1− SSE/(n−p)

SST/(n−1) .

Diagnositics

• variance inflation factor: V IFj =
1

1−R2
j

• leverage of the i’th case is hii

• deleted residual: e(i) =
ei

1−hii

• deleted residual sum of squares: SSE(i) =

SSE − e2i
1−hii

• deleted variance estimate: s2(i) =
SSE(i)

n−k−2

• externally studentized residual:

ti =
ei/(1− hii)

s(i)/
√
1− hii

=
ei

s(i)
√
1− hii

• The deleted estimate of β:

β̂(i) = β̂ − (XTX)−1xi
ei

1− hii

• Cook’s distance:

Di =
1

(k + 1)s2
(β̂ − β̂(i))

TXTX(β̂ − β̂(i))

or

Di =
(ŷ(i) − ŷ)

′
(ŷ(i) − ŷ)

(k + 1)s2

• Flag cases for which hii > 2p/n, |ti| > 2, or
Di > 1. Flag variables for which V IF > 10.
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