
Leverage

Some cases have high leverage, the potential to greatly affect
the fit.

These cases are outliers in the space of predictors.

Often the residuals for these cases are not large because

the response is in line with the other values, or
the high leverage has caused the fitted model to be pulled
toward the observed response.



Summary

1 The leverage exerted by the i ’th case is hii , the i ’th diagonal
element of the hat matrix.

2 Properties:

0 ≤ hii ≤ 1
if there is an intercept term in a regression model hii ≥ 1

n
if there are r observations with the same x , the leverage for
those observations is ≤ 1/r . (groups of potentially influential
cases are masked)
a general guideline is to flag cases where hii > 2p/n, where p
is the number of columns of X , equal to k + 1 in a multiple
regression with k predictors and an intercept.

3 To get leverage values in R, use the command
hat(model .matrix(output)), where output is the output from
a call to lm.



The fitted value at case i is

ŷi = (Hy)i =
n∑

j=1

hijyj = hiiyi +
n∑
j ̸=i

hijyj

a linear combination of all the responses.

Ideally all cases contribute, with those at and closest to x i

dominating.

In influential cases hii approaches 1, and hij approaches 0, for
j ̸= i .

One can inspect the hii = xT
i (X

TX )−1x i , called leverage
values, to identify those which are large.

In R you use the command
hat(model .matrix(output)) to get the leverage values, where
output is the output from lm.



Often it is difficult to find a case with high leverage by examining
each predictor separately or in pairs using bivariate plots

the case may not be extreme in any particular predictor, but still be
far from the centroid of the predictors.

Recall that Var(ŷi ) = hiiσ
2 and Var(ei ) = (1− hii )σ

2, so cases with
high leverage have large estimation variance and small residual
variance.

In simple linear regression

hii =
1

n
+

(xi − x̄)2∑n
j=1(xj − x̄)2

so the minimum is 1/n at x̄ and the maximum occurs when x is
furthest from x̄ .

More generally, hii measures the distance of the predictors from
their centroid.

The sum of the hii is tr(H) = k + 1 = p, so their average is
h̄ = (k + 1)/n = p/n.



How to identify hidden extrapolation

Our book points out the danger of hidden extrapolation when
predicting (Section 3.8).

They note that any x0 with xT
0 (X

TX )−1x0 > hmax , where hmax is
the largest value in the dataset, will imply extrapolation beyond
the cases in the dataset.



0 ≤ hii ≤ 1

Because H = HH and H = HT

hii =
n∑

j=1

hijhji = h2ii +
n∑
j ̸=i

h2ij (1)

so
hii (1− hii ) ≥ 0

and
0 ≤ hii ≤ 1.

Some statistical packages flag cases where
hii > 2(k + 1)/n = 2p/n.



When an intercept β0 is included in a multiple regression
model hii ≥ 1

n

In the notes about adding variables to a regression we partitioned
the X matrix into X 1 and X 2, and saw that H = H1 + H2.1.

Let X 1 be the vector of 1’s, so that H1 = J/n and

H2.1 = X̃ (X̃
T
X̃ )−1X̃T

where X̃ = (I − J/n)X contains the deviations of the predictors
from their means.

The ith diagonal entry of H is

hii =
1

n
+ [X̃ (X̃

T
X̃ )−1X̃

T
]ii .

The second term is positive so

hii ≥ 1/n.



Maximum leverage with replicate x

The second term is of the form∑
j

∑
k

(xij − x̄j)(xik − x̄k)C̃jk

where C̃jk is the jkth entry of (X̃
T
X̃ )−1, and so measures the

distance of the predictors in the ith case from the centroid
x̄ = (x̄1, . . . , x̄k)

T in the k dimensional space of predictors.

When two cases i and k have the same predictors, (x i = xk), (or
equivalently, when there are two y values at the same x)

hik = xT
i (X

TX )−1xk = hii



From equation (1)

hii = 2h2ii +
n∑

j ̸=i ,k

h2ij

so
hii (1− 2hii ) ≥ 0

and
0 ≤ hii ≤ 1/2.

So, the maximum leverage value is halved when there are two
cases with the same values for the predictors.

More generally, if r cases have the same predictors, (or
equivalently, when there are r replicate values of y at x), the
maximum possible leverage value for these cases is 1/r .

Groups of potentially influential cases are masked, and cannot be
detected by examining the hii .



Example: strength of wood beams

Example: Data on the strength of wood beams was given by
Hoaglin and Welsch (The American Statistician, 1978, vol 32, pp
17-22). The response is Strength and the predictors are Specific
Gravity and Moisture Content. The data are

Beam Specific Moisture Strength
Number Gravity Content

1 .499 11.1 11.14
2 .558 8.9 12.74
3 .604 8.8 13.13
4 .441 8.9 11.51
5 .550 8.8 12.38
6 .528 9.9 12.60
7 .418 10.7 11.13
8 .480 10.5 11.70
9 .406 10.5 11.02

10 .467 10.7 11.41



The correlation matrix of the data is

SG MC STRENGTH

SG 1.0000000 -0.6077351 0.9131352

MC -0.6077351 1.0000001 -0.7592328

STRENGTH 0.9131352 -0.7592328 1.0000000
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There is a positive association between Strength and SG and a
negative association with MC .

There is also a negative association between Strength and MC ,
with one value (in the lower left corner) quite different from the
others.

The linear model

Strength = β0 + β1SG + β2MC + ϵ

gives output as follows.



> summary(woodlm.out)

Call: lm(formula = wood.Str ~ wood.SG + wood.MC)

Residuals:

Min 1Q Median 3Q Max

-0.4442 -0.1278 0.05365 0.1052 0.4499

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 10.3015 1.8965 5.4319 0.0010

wood.SG 8.4947 1.7850 4.7589 0.0021

wood.MC -0.2663 0.1237 -2.1522 0.0684

Residual standard error: 0.2754 on 7 degrees of freedom

Multiple R-Squared: 0.9

F-statistic: 31.5 on 2 and 7 degrees of freedom, the p-value is 0.0003163



The leverage values for the linear model in the two predictors are.

> hat(model.matrix(woodlm.out))

[1] 0.4178935 0.2418666 0.4172806 0.6043904 0.2521824 0.1478688

[7] 0.2616385 0.1540321 0.3155106 0.1873364

Case 4 has the largest leverage, this is the case with low SG and
MC .

Note that the leverage values sum to 3, and that
2h̄ = 2(3)/10 = .6 so that case 4 would be flagged as high
leverage by some packages.



The leverage values are plotted in the SG , MC space below.

One can see how the values increase as you move toward the
extremes of the data.
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The residuals from this model are shown below.
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This is only a small data set, but one possible extension to the
model is to add a quadratic term in MC.

>wood.MC2 = wood.MC^2

>woodlm2.out=lm(wood.Str~wood.SG + wood.MC + wood.MC2)

>summary(woodlm2.out)

Call:

lm(formula = wood.Str ~ wood.SG + wood.MC + wood.MC2)



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.59511 8.49356 -5.015 0.002416 **

wood.SG 9.68175 0.72851 13.290 1.12e-05 ***

wood.MC 10.42822 1.71125 6.094 0.000889 ***

wood.MC2 -0.54221 0.08672 -6.252 0.000776 ***

---

Residual standard error: 0.1085 on 6 degrees of freedom

Multiple R-Squared: 0.9867,

Adjusted R-squared: 0.98

F-statistic: 148.3 on 3 and 6 DF, p-value: 5.13e-06



The fit has been improved (s has been reduced from .2754 to
.1085, R2 has increased from .9 to .99) and the MC 2 term is
highly significant.

The leverage values change with the model - X has one more
column.

> hat(model.matrix(woodlm2.out))

[1] 0.7657191 0.2418690 0.4241376 0.6469168

0.2836093 0.6163116 0.2662545

[8] 0.2304277 0.3371019 0.1876526

The first case now has the largest leverage value.

With an extra predictor, however, 2h̄ = .8, so none of these values
meet the threshold.
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