1 An introduction to matrices

- An $r \times c$ matrix is a table of numbers, with r rows and c columns.
- For example

$$A = \begin{pmatrix} 1 & 3\\ 2 & 0\\ 4 & -1 \end{pmatrix}$$
$$B = \begin{pmatrix} 5 & 1\\ 0 & -2 \end{pmatrix}$$

and

are
$$3 \times 2$$
 and 2×2 matrices.

- The *ij*th entry in the matrix A, in the *i*th row and *j*th column, is denoted a_{ij} , so $a_{12} = 3$ and $b_{22} = -2$.
- A vector is a matrix with one column, a column of numbers

$$v = \begin{pmatrix} 6\\ -1\\ 4 \end{pmatrix}$$

• Two matrices of the same size are added componentwise

$$\begin{pmatrix} 5 & 1 \\ 0 & -2 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} 8 & 1 \\ -2 & 2 \end{pmatrix}.$$

• If you multiply a matrix by a number, you multiply each entry in the matrix by the number

$$2A = 2\begin{pmatrix} 1 & 3\\ 2 & 0\\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 6\\ 4 & 0\\ 8 & -2 \end{pmatrix}.$$

• Two matrices can be multiplied if the number of columns of the first matrix equals the number of rows of the second.

- If A is $r \times c$ and B is $c \times d$, then AB is $r \times d$.
- The *ij*th entry of the product AB is obtained by taking the product of the entries in the *i*th row of the first matrix with the entries in the *j* column of the second matrix, and adding them up.
- If C = AB, then

$$c_{ij} = \sum_{k=1}^{c} a_{ik} b_{kj}.$$

• With $A \ 3 \times 2$ and $B \ 2 \times 2$ as above, the product is 3×2

$$\begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 5 & -5 \\ 10 & 2 \\ 20 & 6 \end{pmatrix}.$$

- In general $BA \neq AB$, if fact in the example BA can't be done.
- The identity matrix I has 1's on the diagonal and zero's elsewhere

$$I = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right).$$

• Multiplying by the identity matrix leaves the matrix unchanged

$$AI = IA = A.$$

• If it exists, the inverse of a square matrix M, denoted M^{-1} is such that

$$MM^{-1} = I = M^{-1}M.$$

• Matrix inverses are used to solve systems of linear equations, so if

$$Mx = b$$

then

$$x = M^{-1}b$$

provided the inverse exists.

- Inverses are hard to obtain in general.
- If M is diagonal (only the values on the diagonal are nonzero) the inverse is obtained by taking the reciprocal of each of the diagonal values

$$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right)^{-1} = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .333 \end{array}\right)$$

• If M is 2×2 there is a formula for its inverse

$$M^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

- This will only work if $ad \neq bc$.
- For B above

$$B^{-1} = \begin{pmatrix} 5 & 1 \\ 0 & -2 \end{pmatrix}^{-1} = \frac{1}{-10} \begin{pmatrix} -2 & -1 \\ 0 & 5 \end{pmatrix}.$$

- A useful property of matrix inverses is that $(AB)^{-1} = B^{-1}A^{-1}$, provided the necessary inverses exist.
- The transpose of a matrix A, denoted A^T or A', is obtained by exchanging the rows and columns

$$\begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 4 & -1 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 0 & -1 \end{pmatrix}.$$

• A matrix which is equal to its transpose is called symmetric, for example

$$\left(\begin{array}{cc} 5 & 1 \\ 1 & -2 \end{array}\right)$$

is symmetric.

- The trace of a square matrix is the sum of its diagonal entries, so $tr(A) = \sum a_{ii}$.
- A useful properties of traces is that

$$tr(AB) = tr(BA)$$

if the matrix products exist.

- An $r \times c$ matrix can be viewed as a function which maps vectors of length c into vectors of length r.
- If **x** is an $n \times k$ dimensional matrix with ij'th x_{ij} , then **x** looks like:

$$\mathbf{x} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ x_{31} & x_{32} & \dots & x_{3k} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix}$$

2 Some matrix calculations in R

```
> cement=
```

+ read.csv(

```
+ "http://chase.mathstat.dal.ca/~bsmith/stat3340/Data/cement.c
```

- + header=T)
- > cement

	i	У	x_1	x_2	x_3	x_4
1	1	78.5	7	26	6	60
2	2	74.3	1	29	15	52
3	3	104.3	11	56	8	20
4	4	87.6	11	31	8	47
5	5	95.9	7	52	6	33
6	6	109.2	11	55	9	22
7	7	102.7	3	71	17	6
8	8	72.5	1	31	22	44
9	9	93.1	2	54	18	22
10	10	115.9	21	47	4	26
11	11	83.8	1	40	23	34
12	12	113.3	11	66	9	12
13	13	109.4	10	68	8	12

> y=cement[,2] #put the second column into a vector called y
> x=as.matrix(cement[,-c(1,2)]) #drop the first two columns
> x

	x_1	x_2	x_3	x_4
[1,]	7	26	6	60
[2,]	1	29	15	52
[3,]	11	56	8	20
[4,]	11	31	8	47
[5,]	7	52	6	33

```
[6,]
          55
      11
             9
                 22
 [7,]
       3
          71
             17
                6
 [8,]
          31
             22
       1
                44
 [9,]
       2
          54
                 22
             18
[10,]
     21
          47
                26
             4
[11,]
       1
          40
                34
             23
[12,]
      11
          66
             9
                12
[13,]
      10
          68
                 12
              8
> dim(x) #dimension of x
[1] 13 4
> ones=rep(1,length(y))
> ones
 > dim(ones)
NULL
> X=cbind(ones,x) #cbind concatenates matrices by columns
> X
```

	ones	x_1	x_2	x_3	x_4
[1,]	1	7	26	6	60
[2,]	1	1	29	15	52
[3,]	1	11	56	8	20
[4,]	1	11	31	8	47
[5,]	1	7	52	6	33
[6,]	1	11	55	9	22
[7,]	1	3	71	17	6
[8,]	1	1	31	22	44
[9,]	1	2	54	18	22

[10,]	1	21	47	4	26
[11,]	1	1	40	23	34
[12,]	1	11	66	9	12
[13,]	1	10	68	8	12

> dim(X)

[1] 13 5

The entry in row i and column j of X is the observation on the j - 1'st predictor variable on subject i, where we think of the column of ones as the 0'th predictor variable.

> xp	=t(X)	#X '	= tran	spose	e of .	Χ						
> xp												
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,
ones	1	1	1	1	1	1	1	1	1	1	1	
x_1	7	1	11	11	7	11	3	1	2	21	1	
x_2	26	29	56	31	52	55	71	31	54	47	40	
x_3	6	15	8	8	6	9	17	22	18	4	23	
x_4	60	52	20	47	33	22	6	44	22	26	34	
> di	m(xp)											
[1]	5 13											
> xp:	x=xp%	*%X #.	multip	oly ti	ransp	ose c	of X k	у Х				
> xp:	x											
	ones	x_1	x_2	x_3	x_	4						
ones	13	97	626	153	39	90						
x_1	97	1139	4922	769	262	20						
x_2	626	4922	33050	7201	1573	39						
x_3	153	769	7201	2293	462	28						
-					. –							

x_4 390 2620 15739 4628 15062

> xpxi=solve(xpx) #find the inverse of X'X
> round(xpxi,3)

	ones	x_1	x_2	x_3	x_4
ones	820.655	-8.442	-8.458	-8.635	-8.290
x_1	-8.442	0.093	0.086	0.093	0.084
x_2	-8.458	0.086	0.088	0.088	0.086
x_3	-8.635	0.093	0.088	0.095	0.086
x_4	-8.290	0.084	0.086	0.086	0.084

> round(xpxi%*%xpx,3) # (X'X)inverse times (X'X) should be the

	ones	x_1	x_2	x_3	x_4
ones	1	0	0	0	0
x_1	0	1	0	0	0
x_2	0	0	1	0	0
x_3	0	0	0	1	0
x_4	0	0	0	0	1

> b=xpxi%*%t(X)%*%y #(X'X)inverse X'y
> b

[,1] ones 62.4053693 x_1 1.5511026 x_2 0.5101676 x_3 0.1019094 x_4 -0.1440610

> $print(lm(y^x_1+x_2+x_3+x_4, data=cement))$ #least squares estimula: Call: lm(formula = y ~ x_1 + x_2 + x_3 + x_4, data = cement)

Coefficients:							
(Intercept)	x_1	x_2	x_3	x_4			
62.4054	1.5511	0.5102	0.1019	-0.1441			

>