
ANOVA table and geometry

The simplest ANOVA table partitions the total sum of squares
in y into a component explained by the variation in x and a
residual
We are considering the situation with n observations and k
predictor variables.

Source Sum of Squares Degrees of Freedom

Regression SSR =
∑

(ŷi − ȳ)2 k
Residual SSE =

∑
(yi − ŷi )

2 n − k − 1

Total SST =
∑

(yi − ȳ)2 n − 1
The ANOVA table shows how much of the variation in y is
explained by the predictors, and is often measured as
R2 = SSR/SST .
The total and residual sums of squares give measures of fit
respectively for a model containing a constant mean

y = µ+ ε = β01 + ε

and a model with a mean depending on all the predictors

y = Xβ + ε.



Let 1 be the vector of 1’s of length n, and let J be the matrix
of 1’s.

Then the hat matrix for the simple model with intercept only
is

J/n = 1(1T1)−11T .

Recall that the hat matrix gives fitted values, ŷ = Hy.

The residuals are y − ŷ = (I−H)y.

The matrices H, I−H, J/n, I− J/n, and H− J/n are all
projection matrices, which map vectors into subspaces of
sample space.

Projection matrices are symmetric and idempotent, which
means that when you multiply the matrix by itself, it doesn’t
change.

For example HH = H.



There are several different matrix expressions for the sums of
squares

SST = yT (I− J/n)y = yTy − nȳ2

SSR = yT (H− J/n)y = ŷT ŷ − nȳ2

= β̂
T
XTy − nȳ2

and

SSE = yT (I−H)y

= (y − Xβ̂)T (y − Xβ̂)

= yTy − β̂T
XTy



Cochran’s Theorem

Theorem: Suppose that the variables yi are independent N(µi , 1),
i = 1, . . . , n, and let yTQ1y, yTQ2y, . . . , yTQsy be quadratic
forms in the y ’s such that

n∑
i=1

y2
i = yTQ1y + yTQ2y + . . .+ yTQsy

Let nj = rank Qj . Then the quadratic forms will have independent
noncentral chi-squared distributions with degrees of freedom
n1, n2, . . . , nS respectively, if and only if,

∑s
j=1 nj = n. (the

noncentrality parameter of yTQ1y is given by µTQ1µ)



Application of Cochran’s theorem

By construction SST = SSR + SSE .

As SST =
∑n

i=1 y
2
i − n(ȳ)2, it follows that

n∑
i=1

y2
i = nȳ2 + SSR + SSE = yT (J/n)y + SSR + SSE (1)

The matrices of the quadratic forms in SSR and SSE are
projection matrices The rank of a projection matrix is the
trace of the matrix.



rank(J/n) = tr(J/n) = n/n = 1

rank(I−H) = tr(I−H) = tr(In×n) − tr(H) = n − tr(H) =

= n − tr(XTX(XTX)−1)

= n − tr(I(k+1)×(k+1)) = n − (k + 1)

using the facts that tr(A + B) = tr(A) + tr(B) and
tr(AB) = tr(BA).

rank (H−J/n) = tr(H−J/n) = tr(H)−tr(J/n) = (k+1)−1 = k



as n = 1 + [(k + 1) − 1] + [n − (k + 1)], the conditions of

Cochran’s theorem hold, and it follows that nȳ2

σ2 , SSR
σ2 and SSE

σ2

have independent χ2 distributions with 1, k and n − 1 − k
degrees of freedom

and additionally, under H0 : β1 = β2 = . . . = βk = 0, the
distributions are “central” chi-squared distributions



test of overall significance: H0 : β1 = . . . = βk = 0

Under the null hypothesis, SSE/σ2 and SSR/σ2 have
independent χ2 distributions with n − 1 − k and k degrees of
freedom, respectively.

It follows by definition of the F distribution that under H0,
F = SSR/k

SSE/(n−1−k) has an F distribution with k numerator and
n − 1 − k denominator degrees of freedom

and the p-value for the test is P(Fk,n−1−k > Fobs).



Geometry

Geometrically, the deviation of the response vector from its
mean is decomposed into a component in the expectation
surface orthogonal to the vector of 1’s and a component
perpendicular to the expectation surface

(I− J/n)y = (H− J/n)y + (I−H)y

Multiplying each side by its transpose, and using the facts
that projection matrices are symmetric and idempotent, gives
the ANOVA identity

yT (I− J/n)y = yT (H− J/n)y

+yT (I−H)y

The cross product term vanishes because
(I−H)(H− J/n) = 0. (Note that HJ/n = J/n, because the
vector of 1’s is one of the columns of X.)



Interpretation

The ANOVA decomposition is just Pythagoras’ theorem for
the right angle triangle with hypotenuse (I− J/n)y, and
perpendicular sides (H− J/n)y and (I−H)y.

(Note: the dimension of the subspace onto which a projection
matrix projects is given by the trace (sum of diagonal entries)
of the matrix.)

From Cochran’s theorem the degrees of freedom are equal to
the dimension of the subspaces into which y is projected.

For SST , we project perpendicular to the vector 1, so the
degrees of freedom is/are n − 1.

For SSE , the projection is orthogonal to the expectation
surface, and so the degrees of freedom is/are n − k − 1

For SSR, the projection is into the component of the
expectation surface perpendicular to the vector 1, so the
degrees of freedom is/are k .


