
Multiple Linear Regression using Matrices - I I

Where

for subject i , xT
i = (1, xi1, xi2, . . . , xik) is a vector of

observations on k covariates (also known as predictor
variables, or independent variables). The ”1” is needed when
an intercept is included in the regression model.
Yi is the observation on the outcome variable (also known as
the dependent variable)
βT = (β0, β1, . . . , βk) is a vector of constants

the multiple regression model says that for the i ’th subject

Yi = µi + ϵi ,

where

µi = xT
i β,

or

Yi = β0 + β1xi1 + β2xi2 + ...+ βkxik + ϵi .



Multiple Linear Regression using Matrices - I II

We assume to begin that the ϵi are mutually uncorrelated,
and have zero mean and constant variance σ2.

The model says that the observation on the i’th subject
consists of its mean, which is a linear function of the
covariates, and an additive error term ϵi .



Collecting all terms into vectors and matrices gives
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or

y = Xβ + ϵ.



Least squares estimation

The method of least squares is usually used for estimating β,
that is we find β̂ which minimizes

S(β) =
n∑

i=1

(yi − xT
i β)

2

= (y − Xβ)T (y − Xβ)

The least squares estimates can be found by setting the vector
of partial derivatives of S(β) with respect to β equal to 0.

Taking derivatives gives (see Appendix C.2.2)

−2XT (y − Xβ).

Setting to zero gives the ‘normal equations’

XT (y − Xβ) = 0,

which are solved to give

β̂ = (XTX )−1XTy .


