
Multiple Linear Regression using Matrices - II I

Geometrically, the vector y is a point in the n dimensional
sample space.

The vector β is a point in the p dimensional parameter
space., where p = k + 1.

For each β, Xβ is a point in the sample space (i.e. the n × p
matrix X is a mapping from the parameter space to the
sample space).

The values Xβ form a p dimensional linear subspace or plane
within the sample space. It is also assumed that X is of rank
p.

This subspace is called the expectation surface, because
E (y) = Xβ.



Multiple Linear Regression using Matrices - II II

The sum of squares

S(β) = (y − Xβ)T (y − Xβ)

is the squared length of the vector y − Xβ, or the squared
distance between the observed y and the point Xβ.

The method of least squares finds the value of β, called β̂, for
which the point X β̂ on the expectation surface is closest to
the point y .
From geometric considerations, X β̂ must be the
perpendicular projection of y on the expectation surface.



Hat matrix

The ‘hat’ matrix, H = X (XTX )−1XT , projects y onto the
expectation surface at a point ŷ closest to y .
So ŷ = Hy = X [(XTX )−1XTy ] = X β̂, where
β̂ = (XTX )−1XTy is the least squares estimate of β.

Note that HX = X . This means, for example, that any
vector v in the column space of X , Hv = v . As an example,
H1 = 1.

Note that H is symmetric, and that H2 = H .



Sampling distribution of y

We assume that:
y = Xβ + ϵ, where

elements of ϵ are normally distributed with

E(ϵ) = 0

Cov(ϵ) = σ2I
equivalently

elements of y are normally distributed with

E(y) = Xβ and

Cov(y) = σ2I



Sampling distribution of β̂

β̂ = (XTX )−1XTy

elements of β̂ are normally distributed, because linear
combinations of normal random variables are normally
distributed, with

E(β̂) = (XTX )−1XTE(y) = (XTX )−1XTXβ = β and

Cov(β̂) = Cov((XTX )−1XTy)

= (XTX )−1XTCov(y)(XTX )−1XT )T

= XTX )−1XTσ2IX (XTX )−1

= σ2(XTX )−1



Sampling distribution of ŷ

ŷ = Hy

elements of ŷ are normally distributed, because linear
combinations of normal random variables are normally
distributed, with

E(ŷ) = HE (y) = HXβ = X (XTX )−1XTXβ = Xβ

Cov(ŷ) = Cov(Hy) = HCov(y)HT = Hσ2IHT

= σ2HHT = σ2H = σ2X (XTX )−1XT



Sampling distribution of residuals

r = y − ŷ = (I − H)y

elements of r are normally distributed, because linear
combinations of normal random variables are normally
distributed, with

E(r) = (I − H)E (yp) = (I − H)Xβ = 0

Cov(r) = Cov((I − H)y) = (I − H)σ2I (I − H)

= σ2(I − H)(I − H)T = σ2(I − H)

The variance of the i’th residual is σ2(1− hii ) where hii is the
i’th diagonal element of H . This means that the residuals will
typically have different variances.



Covariance of residuals and fitted values

Cov(r , ŷ) = Cov((I − H)y ,Hy)

= σ2(I − H)H = 0

(Why?)

which means that residuals and fitted values are uncorrelated

which means that residuals and fitted values are independent
(as uncorrelated normal random variables are independent).



Estimation of σ2

The residuals are contained in the vector e = y − ŷ .
The residual, or error, sum of squares is SSE =

∑
e2i = eTe

With k predictor variables, the error mean square is

MSE =
SSE

n − (k + 1)
=

SSE

n − p

σ̂2 = MSE is an unbiased estimate of σ2 because

E (SSE ) = E (eTe) = 0T0+σ2tr(I (I − H) = σ2(tr I−tr(H))

= σ2(n − p)

(Why?)



Confidence intervals I

We will see that SSE is independent of β̂, and

where Cjj is the j + 1’st diagonal entry of (XTX )−1, the

standard error of β̂j is σ̂
√
Cjj , and

t =
β̂j−βj

σ̂
√

Cjj
has a t distribution with n − (k + 1) = n − p

degrees of freedom.

It follows that a 100(1− α)% confidence interval for βj is
given by

β̂j ± tα/2,n−pσ̂
√

Cjj

where x0 is a vector of covariate values, a 100(1− α)%
confidence interval for the mean of y when x = x0,
µy |x 0

= E (y |x0), is given by

ŷ0 ± tα/2,n−pσ̂

√
xT
0 (X

TX )−1x0



Prediction intervals (not responsible)

In future, you plan to measure the value of y when the
predictor variables equal x0.

A point estimate of the future y is given by ŷ0 = x ′
0β̂.

The goal is to find an interval in which the future y will lie,
with probability 1− α.

A 100(1− α)% prediction interval for a future value of y
when x = x0 is given by

ŷ0 ± tα/2,n−pσ̂

√
1 + xT

0 (X
TX )−1x0



Simultaneous confidence intervals for βj ’s

When making more than one confidence interval, it is
important to ensure that the joint coverage of all of the
intervals constructed is ≥ 100(1− α).

If m intervals are constructed, with each interval having
coverage probability 100(1− α/m), it follows from
Bonferroni’s inequality that the probability that the m
intervals will simulataneously cover their associated
parameters is at least 1− α.

For example, the k + 1 intervals

β̂j ± tα/(2(k+1)),n−1−k

√
MSE

√
Cj ,j , j = 0, 1, 2, . . . , k

have joint coverage of at least 100(1− α).
In general, if constructing m simultaneous confidence
intervals, just replace α by α/m, and use the usual procedure
for the CI.



Bonferroni’s inequality (Not responsbile for this material)

Where E1 and E2 are events, and E c is the complement of E ,
because the probability of the union is less than or equal to
the sum of the probabilities, we know that

P(E c
1

⋃
E c
2 ) ≤ P(E c

1 ) + P(E c
2 )

then use the fact that P(E ) = 1− P(E c), similarly
P(E c

1 ) = 1− P(E1), and let E = E c
1

⋃
E c
2 , from which

E c = E1
⋂

E2. Putting all of this together it follows that

P(E1

⋂
E2) = 1− P(E c

1

⋃
E c
2 ) ≥ 1− (P(E c

1 ) + P(E c
2 ))

Letting P(E1) = 1−α/2 and P(E2) = 1−α/2, it follows that

P(E1

⋂
E2) ≥ 1− (α/2 + α/2) = 1− α



Application to simultaneous inference - take this as a given.

Let E1 be the event that βj is contained in the interval with

endpoints β̂j ± t(α/2)/2,n−p

√
MSE

√
Cj+1,j+1. The probability

of this is 1− α/2.

Let E2 be the event that βm is contained in the interval with
endpoints β̂m ± t(α/2)/2,n−p

√
MSE

√
Cm+1,m+1. The

probability of this is 1− α/2.

It follows from Bonferroni’s inequality that the probability that
EACH of βj and βm is simultaneously contained in their
associated intervals is at least 1− α.

We say that the two intervals form a joint 100(1− α)%
confidence region for (βj , βm).

What works for two the the βj ’s, works for an arbitrary
number, hence the form for the k + 1 simultanous intervals
given above, where α is replaced by α/(k + 1).



Simultaneous confidence region for β

A joint 100(1− α)% confidence region for the vector β is
given by those points β for which

(β − β̂)TXTX (β − β̂) ≤ pMSE Fα,p,n−p

This is a p dimensional ellipse centred at β̂.


