Testing Hypotheses in Multiple Linear Regression: overall test of significance and partial F test

Overall test of significance: $H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0.$

If the multiple regression model holds,

$$E(MSE) = \sigma^2$$

while in general

۲

$$E(MSR) = \sigma^2 + \frac{\lambda}{k}$$

where

•
$$\lambda = \frac{1}{\sigma^2} \boldsymbol{\beta}^{*'} \boldsymbol{X}_c^{\prime} \boldsymbol{X}_c \boldsymbol{\beta}^*$$

• $\boldsymbol{\beta}^{*'} = (\beta_1, \beta_2, \dots, \beta_k)$

• and \boldsymbol{X}_c is the centered $n \times k$ matrix with *ij*'th element $x_{ij} - \bar{x}_j$

• Under the null hypothesis $H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$,

$$F = \frac{SSR/k}{SSE/(n-p)} = \frac{MSR}{MSE}$$

has an $F_{k,n-p}$ distribution.

 When testing against the alternative H_A: at least one of β₁, β₂,..., β_k ≠ 0, the p-value for the overall test of significance of the regression is given by

$$P(F_{k,n-p} > F_{obs})$$

computational details

- the error sum of squares SSE = y^Ty β^TX^Ty has n p degrees of freedom
- the total sum of squares $SST = \mathbf{y}^T \mathbf{y} n\bar{y}^2$ has n 1 degrees of freedom
- the regression sum of squares $SSR = \hat{\beta}^T \mathbf{X}^T \mathbf{y} n\bar{y}^2$ has k degrees of freedom.
- SST = SSE + SSR
- total degrees of freedom (n-1)= regression degrees of freedom (k) + error degrees of freedom (n-p)
- An ANOVA table is used to organize the calculation of the test statistics *F*
- the p-value is $P(F_{k,n-p} > F_{obs})$.

General regression significance test/Partial F test

(Section 3.3 in Montgomery *et al*)

- There are k independent variables in all, so that β is a p = k + 1 vector.
- partition $oldsymbol{eta}$ as

$$oldsymbol{eta} = \left[egin{array}{c} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{array}
ight]$$

• where eta_2 is an r vector, and eta_1 is a p-r vector

• partition X, accordingly, as

$$\mathbf{X} = [\mathbf{X}_1 \ \mathbf{X}_2]$$

where X_1 consists of the first p - r columns of X and X_2 consists of the last r columns of X.

• In terms of these partitioned arrays, the regression model $\mathbf{y} = \mathbf{X}\beta + \epsilon$ can be written as $\mathbf{y} = \mathbf{X}_1\beta_1 + \mathbf{X}_2\beta_2 + \epsilon$

- The goal is to test H₀ : β₂ = 0, against the two sided alternative H_A : β₂ ≠ 0
- Note that the null hypothesis sets r parameters equal to 0, which means that r variables (formally $x_{k-r+1}, x_{k-r+2}, \ldots, x_k$ are not part of the regression model, which leaves the other k r variables in the regression model.).
- The model under the alternative hypothesis is referred to as the **full model** and the model under the null hypothesis is called the **reduced model**.
- The reduced model is $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}.$

For the full model

• LSE of
$$\boldsymbol{\beta}$$
 is $\boldsymbol{\hat{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$

• regression sum of squares is

$$SSR_{Full}(oldsymbol{eta}) = \hat{oldsymbol{eta}}^T oldsymbol{X}^T oldsymbol{y} - nar{oldsymbol{y}}^2$$

• the error sum of squares is

$$SSE_{Full}(\boldsymbol{eta}) = \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y} - \boldsymbol{\hat{eta}}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

• the error mean square is

$$MSE_{Full} = rac{SSE_{Full}(eta)}{n-p}$$

・ロ・・母・・明・・日・ うくの

For the reduced model

• LSE of
$$\beta_1$$
 is $\hat{\beta_1} = ({\pmb{X_1}}^{\mathsf{T}} {\pmb{X}}_1)^{-1} {\pmb{X_1}}^{\mathsf{T}} {\pmb{y}}$

• regression sum of squares is

$$SSR_{Red}(\beta_1) = \hat{\beta_1}^T \boldsymbol{X_1}^T \boldsymbol{y} - n\bar{y}^2$$

• error sum of squares is

$$SSE_{Red}(\beta_1) = \mathbf{y}^T \mathbf{y} - \hat{\beta_1}^T \mathbf{X_1}^T \mathbf{y}$$

• The regression sum of squares due to β_2 given that β_1 is already in the model is given by

$$SSR(\beta_2|\beta_1) = SSR_{Full}(\beta) - SSR_{Red}(\beta_1)$$

This is more appropriately phrased as the regression sum of squares due to X₂ given that X₁ is already in the model.
Note that

$$SSR(\beta_2|\beta_1) = SSE_{Red}(\beta_1) - SSE_{Full}(\beta)$$

This equivalent form is more typically used.

General regression significance test/partial F test

- $SSR(\beta_2|\beta_1)$ is independent of MSE_{Full} .
- the test statistic

$$F = \frac{SSR(\beta_2|\beta_1)/r}{MSE_{Full}}$$

equals

$$F = rac{(SSE_{Red}(eta_1) - SSE_{Full}(eta))/r}{MSE_{Full}}$$

- has an *F* distribution with *r* numerator and n p denominator degrees of freedom under the null hypothesis $H_0: \beta_2 = \mathbf{0}$.
- has a noncentral F distribution with r numerator and n p denominator degrees of freedom under the alternative hypothesis. (More about the noncentral F distribution later.)
- the p-value for the test is

$$P(F_{r,n-p} > F_{Obs})$$

Partial F test - you are not responsible for remembering the algebraic derivations

Suppose we have the model

$$m{y} = m{X}_1m{eta}_1 + m{\epsilon}$$

and want to add the r predictors X_2 .

- For example, we may wish to test the hypotheses $H_0: \beta_2 = 0$ $H_A: \beta_{2j} \neq 0$ for some j
- Then we want to compare the fit of the reduced model under H_0 to that of the full model under H_1 .
- In total there are k predictors, so X₁ consists of the column of 1's and k - r columns of predictors.

• Write
$$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$$
 where \mathbf{X}_1 is $n \times (k+1-r)$, \mathbf{X}_2 is $n \times r$
and $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ to conform, so β_1 is $(k+1-r) \times 1$ and β_2
is $r \times 1$.

• Then the model containing \boldsymbol{X}_1 and \boldsymbol{X}_2 can be written

$$\boldsymbol{y} = \boldsymbol{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}.$$

→ < Ξ → <</p>

3)) B

Case 1: Predictors orthogonal

• If the new predictors X_2 are orthogonal to the old ones $X_1^T X_2 = \mathbf{0}$ and

$$oldsymbol{X}^{T}oldsymbol{X} = \left(egin{array}{cc} oldsymbol{X}_{1}^{T}oldsymbol{X}_{1} & 0 \ 0 & oldsymbol{X}_{2}^{T}oldsymbol{X}_{2} \end{array}
ight)$$

which has inverse

$$(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1} = \begin{pmatrix} (\boldsymbol{X}_1^{\mathsf{T}}\boldsymbol{X}_1)^{-1} & 0\\ 0 & (\boldsymbol{X}_2^{\mathsf{T}}\boldsymbol{X}_2)^{-1} \end{pmatrix}.$$

• The least squares estimates are

$$\begin{pmatrix} \hat{\boldsymbol{\beta}}_1 \\ \hat{\boldsymbol{\beta}}_2 \end{pmatrix} = \begin{pmatrix} (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} & 0 \\ 0 & (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{X}_1^T \boldsymbol{y} \\ \boldsymbol{X}_2^T \boldsymbol{y} \end{pmatrix}$$
$$= \begin{pmatrix} (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{y} \\ (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^T \boldsymbol{y} \end{pmatrix}.$$

- The estimates of β₁ are unchanged and β₂ is estimated separately from the new columns.
- The regression sum of squares is

$$SSR(\boldsymbol{\beta}) = \hat{\boldsymbol{\beta}}^{T} \boldsymbol{X}^{T} \boldsymbol{y} - n\bar{y}^{2}$$

$$= \hat{\boldsymbol{\beta}}_{1}^{T} \boldsymbol{X}_{1}^{T} \boldsymbol{y} - n\bar{y}^{2} + \hat{\boldsymbol{\beta}}_{2}^{T} \boldsymbol{X}_{2}^{T} \boldsymbol{y}$$

$$= SSR(\boldsymbol{\beta}_{1}) + SSR(\boldsymbol{\beta}_{2})$$

and factors into two parts depending on \boldsymbol{X}_1 and \boldsymbol{X}_2 separately.

• The extra regression sum of squares for X_2 given that X_1 is already in the model can be written

$$SSR(\beta_2) = \hat{\beta}_2^T \mathbf{X}_2^T \mathbf{y}$$

= $\mathbf{y}^T \mathbf{X}_2 (\mathbf{X}_2^T \mathbf{X}_2)^{-1} \mathbf{X}_2^T \mathbf{y}$
= $\mathbf{y}^T \mathbf{H}_2 \mathbf{y}$

where $\boldsymbol{H}_2 = \boldsymbol{X}_2 (\boldsymbol{X}_2^T \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^T$ is the projection onto the subspace spanned by the columns of \boldsymbol{X}_2 (which is orthogonal to \boldsymbol{X}_1).

• Under the null hypothesis that $oldsymbol{eta}_2 = oldsymbol{0}$

$$\frac{SSR(\boldsymbol{\beta}_2)}{\sigma^2} \sim \chi_r^2$$

and

$$F = \frac{MSR(\beta_2)}{MSE_{full}} \sim F_{r,n-1-k}$$

and large F gives evidence against H_0 .

Case 2: Predictors not orthogonal

- When the new predictors are not orthogonal to the old ones, $\mathbf{X}_{1}^{T}\mathbf{X}_{2} \neq \mathbf{0}$, the situation is more complicated.
- The model can be written as before, and then manipulated to create new predictors which are orthogonal

where

$$\boldsymbol{H}_1 = \boldsymbol{X}_1 (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T$$

is the projection on the subspace spanned by the predictors $oldsymbol{X}_1$, and

$$\boldsymbol{\theta} = \boldsymbol{\beta}_1 + (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{X}_2 \boldsymbol{\beta}_2$$
(1)

is a new parameter created from β_1 and β_2 .

The matrices X₁ and (I – H₁)X₂ are orthogonal, so estimates of θ and β₂ can be obtained separately, as above:

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{y}$$
(2)

and

$$\hat{\boldsymbol{\beta}}_2 = [\boldsymbol{X}_2^T (\boldsymbol{I} - \boldsymbol{H}_1) \boldsymbol{X}_2]^{-1} \boldsymbol{X}_2^T (\boldsymbol{I} - \boldsymbol{H}_1) \boldsymbol{y}.$$
(3)

• Rearranging (1) gives

$$\hat{\boldsymbol{eta}}_1 = \hat{\boldsymbol{ heta}} - (\boldsymbol{X}_1^{ op} \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^{ op} \boldsymbol{X}_2 \hat{\boldsymbol{eta}}_2$$

or

$$\hat{\boldsymbol{\beta}}_1 = [\boldsymbol{X}_1^T \boldsymbol{X}_1]^{-1} \boldsymbol{X}_1^T (\boldsymbol{y} - \boldsymbol{X}_2 \hat{\boldsymbol{\beta}}_2).$$
(4)

• From (3) we see that $\hat{\beta}_2$ is the result of regressing one set of residuals, $(I - H_1)y$ on another $(I - H_1)X_2$.

- The latter is a matrix of residuals obtained by regressing each column of **X**₂ on **X**₁.
- It contains the information from \boldsymbol{X}_2 not already explained by $\boldsymbol{X}_1.$

back to the overall significance of the regression

- Suppose that X₂ is all of X except for the initial column of ones.
- In which case $oldsymbol{eta}_1=eta_0$, $oldsymbol{X}_1=oldsymbol{1}$, and the reduced model is

$$\mathbf{y} = \beta_0 \mathbf{1} + \epsilon$$

which just says that

$$y_i = \beta_0 + \epsilon_i$$

In this reduced model

•
$$\hat{\beta}_0 = \bar{y}$$

• and the error sum of squares is

$$SSE_{Red} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

(which we recognize as the usual total sum of squares, SST).

so the partial F statistic is given by

$$F = \frac{(SSE_{Red}(\beta_1) - SSE_{Full}(\beta))/r}{MSE_{Full}}$$
$$= \frac{(SST - SSE_{Full}(\beta))/r}{MSE_{Full}}$$

• but this is just the F statistic used to test

$$H_0:\beta_1=\beta_2=\ldots\beta_k=0$$

the overall test of significance of the regression. so the overall test of significance is just a particular application of the partial F test.