
Testing Hypotheses in Multiple Linear Regression: overall
test of significance and partial F test

Overall test of significance: H0 : β1 = β2 = . . . = βk = 0.

If the multiple regression model holds,

E (MSE ) = σ2

while in general

E (MSR) = σ2 +
λ

k

where

λ = 1
σ2β

∗′
X

′

cX cβ
∗

β∗′
= (β1, β2, . . . , βk)

and X c is the centered n × k matrix with ij ’th element xij − x̄j



Under the null hypothesis H0 : β1 = β2 = . . . = βk = 0,

F =
SSR/k

SSE/(n − p)
=

MSR

MSE

has an Fk,n−p distribution.

When testing against the alternative HA : at least one of
β1, β2, . . . , βk ̸= 0, the p-value for the overall test of
significance of the regression is given by

P(Fk,n−p > Fobs)



computational details

the error sum of squares SSE = yTy − β̂TXTy has n − p
degrees of freedom

the total sum of squares SST = yTy − nȳ2 has n− 1 degrees
of freedom

the regression sum of squares SSR = β̂TXTy − nȳ2 has k
degrees of freedom.

SST = SSE + SSR

total degrees of freedom (n-1)= regression degrees of freedom
(k) + error degrees of freedom (n-p)

An ANOVA table is used to organize the calculation of the
test statistics F

the p-value is P(Fk,n−p > Fobs).



General regression significance test/Partial F test

(Section 3.3 in Montgomery et al)

There are k independent variables in all, so that β is a
p = k + 1 vector.

partition β as

β =

[
β1

β2

]
where β2 is an r vector, and β1 is a p − r vector

partition X, accordingly, as

X = [X1 X2]

where X1 consists of the first p − r columns of X and X2

consists of the last r columns of X.

In terms of these partitioned arrays, the regression model
y = Xβ + ϵ can be written as y = X1β1 + X2β2 + ϵ



The goal is to test H0 : β2 = 0, against the two sided
alternative HA : β2 ̸= 0

Note that the null hypothesis sets r parameters equal to 0,
which means that r variables (formally xk−r+1, xk−r+2, . . . , xk
are not part of the regression model, which leaves the other
k − r variables in the regression model.).

The model under the alternative hypothesis is referred to as
the full model and the model under the null hypothesis is
called the reduced model.

The reduced model is y = X 1β1 + ϵ.



For the full model

LSE of β is β̂ = (XTX )−1XTy
regression sum of squares is

SSRFull(β) = β̂
T
XTy − nȳ2

the error sum of squares is

SSEFull(β) = yTy − β̂
T
XTy

the error mean square is

MSEFull =
SSEFull(β)

n − p



For the reduced model

LSE of β1 is β̂1 = (X1
TX 1)

−1X1
Ty

regression sum of squares is

SSRRed(β1) = β̂1
T
X1

Ty − nȳ2

error sum of squares is

SSERed(β1) = yTy − β̂1
T
X1

Ty



The regression sum of squares due to β2 given that β1 is
already in the model is given by

SSR(β2|β1) = SSRFull(β)− SSRRed(β1)

This is more appropriately phrased as the regression sum of
squares due to X2 given that X1 is already in the model.

Note that

SSR(β2|β1) = SSERed(β1)− SSEFull(β)

This equivalent form is more typically used.



General regression significance test/partial F test

SSR(β2|β1) is independent of MSEFull .

the test statistic

F =
SSR(β2|β1)/r

MSEFull

equals

F =
(SSERed(β1)− SSEFull(β))/r

MSEFull

has an F distribution with r numerator and n − p denominator
degrees of freedom under the null hypothesis H0 : β2 = 0.
has a noncentral F distribution with r numerator and n − p
denominator degrees of freedom under the alternative
hypothesis. (More about the noncentral F distribution later.)
the p-value for the test is

P(Fr ,n−p > FObs)



Partial F test - you are not responsible for remembering
the algebraic derivations

Suppose we have the model

y = X 1β1 + ϵ

and want to add the r predictors X 2.

For example, we may wish to test the hypotheses
H0 : β2 = 0
HA : β2j ̸= 0 for some j

Then we want to compare the fit of the reduced model under
H0 to that of the full model under H1.

In total there are k predictors, so X 1 consists of the column
of 1’s and k − r columns of predictors.

Write X = (X 1,X 2) where X 1 is n× (k + 1− r), X 2 is n× r

and β =

(
β1

β2

)
to conform, so β1 is (k + 1− r)× 1 and β2

is r × 1.



Then the model containing X 1 and X 2 can be written

y = X 1β1 + X 2β2 + ϵ.



Case 1: Predictors orthogonal

If the new predictors X 2 are orthogonal to the old ones
XT

1 X 2 = 0 and

XTX =

(
XT

1 X 1 0

0 XT
2 X 2

)
which has inverse

(XTX )−1 =

(
(XT

1 X 1)
−1 0

0 (XT
2 X 2)

−1

)
.

The least squares estimates are(
β̂1

β̂2

)
=

(
(XT

1 X 1)
−1 0

0 (XT
2 X 2)

−1

)(
XT

1 y
XT

2 y

)
=

(
(XT

1 X 1)
−1XT

1 y
(XT

2 X 2)
−1XT

2 y

)
.



The estimates of β1 are unchanged and β2 is estimated
separately from the new columns.
The regression sum of squares is

SSR(β) = β̂
T
XTy − nȳ2

= β̂
T
1 XT

1 y − nȳ2 + β̂
T
2 XT

2 y
= SSR(β1) + SSR(β2)

and factors into two parts depending on X 1 and X 2

separately.
The extra regression sum of squares for X 2 given that X 1 is
already in the model can be written

SSR(β2) = β̂
T
2 XT

2 y
= yTX 2(XT

2 X 2)
−1XT

2 y
= yTH2y

where H2 = X 2(XT
2 X 2)

−1XT
2 is the projection onto the

subspace spanned by the columns of X 2 (which is orthogonal
to X 1).



Under the null hypothesis that β2 = 0

SSR(β2)

σ2
∼ χ2

r

and

F =
MSR(β2)

MSEfull
∼ Fr ,n−1−k

and large F gives evidence against H0.



Case 2: Predictors not orthogonal

When the new predictors are not orthogonal to the old ones,
XT

1 X 2 ̸= 0, the situation is more complicated.

The model can be written as before, and then manipulated to
create new predictors which are orthogonal

y = X 1β1 + X 2β2 + ϵ

= X 1β1 + (H1 + I − H1)X 2β2 + ϵ

= X 1θ + (I − H1)X 2β2 + ϵ,

where
H1 = X 1(XT

1 X 1)
−1XT

1

is the projection on the subspace spanned by the predictors
X 1, and

θ = β1 + (XT
1 X 1)

−1XT
1 X 2β2 (1)

is a new parameter created from β1 and β2.



The matrices X 1 and (I − H1)X 2 are orthogonal, so
estimates of θ and β2 can be obtained separately, as above:

θ̂ = (XT
1 X 1)

−1XT
1 y (2)

and
β̂2 = [XT

2 (I − H1)X 2]
−1XT

2 (I − H1)y . (3)

Rearranging (1) gives

β̂1 = θ̂ − (XT
1 X 1)

−1XT
1 X 2β̂2

or
β̂1 = [XT

1 X 1]
−1XT

1 (y − X 2β̂2). (4)

From (3) we see that β̂2 is the result of regressing one set of
residuals, (I − H1)y on another (I − H1)X 2.



The latter is a matrix of residuals obtained by regressing each
column of X 2 on X 1.

It contains the information from X 2 not already explained by
X 1.



back to the overall significance of the regression

Suppose that X 2 is all of X except for the initial column of
ones.

In which case β1 = β0, X 1 = 1, and the reduced model is

y = β01+ ϵ

which just says that
yi = β0 + ϵi

In this reduced model
β̂0 = ȳ
and the error sum of squares is

SSERed =
n∑

i=1

(yi − ȳ)2

(which we recognize as the usual total sum of squares, SST ).



so the partial F statistic is given by

F =
(SSERed(β1)− SSEFull(β))/r

MSEFull

=
(SST − SSEFull(β))/r

MSEFull

but this is just the F statistic used to test

H0 : β1 = β2 = . . . βk = 0

the overall test of significance of the regression.
so the overall test of significance is just a particular
application of the partial F test.


