
Review of random variables, means and variances

We model observations using random variables and probability
functions.

Discrete random variables take on discrete values (in
one-to-one correspondence with the integers).

The probability mass function assigns probability p(yi ) to each
value. yi , i = 1, . . .

p(yi ) ≥ 0∑
p(yi ) = 1

Examples are the binomial and Poisson distributions.



Continuous random variables take values over an interval.

Probability is given by the area under a density curve f (y).

P(a < Y < b) =

∫ b

a
f (y)dy

f (y) ≥ 0∫∞
−∞ f (y)dy = 1



Means

Random variables and probability mass and density functions
can be described in terms of their location, spread and shape.

One measure of location is the mean or expected value, E [Y ],
calculated as

E [Y ] =

∫
yf (y)dy

for continuous random variables, and

E [Y ] =
∑

yip(yi )

for discrete random variables.

The mean is like a theoretical average of all the possible
values.



Variances I

One measure of spread is the variance, given by

Var [Y ] = E [(Y − E [y ])2]

=

∫
(y − E [y ])2f (y)dy

for continuous variables, and

Var [Y ] =
∑

(yi − E [y ])2p(yi )

for discrete variables.

The variance can also be calculated as

Var [Y ] = E [Y 2]− E [Y ]2.

The standard deviation is the square root of the variance, and
is a measure of spread that has the same units as Y .



mean of a function of Y I

The distribution of a function of a random variable
W = g(Y ) can (sometimes with great difficulty) be derived
from the density of the original variable Y .

The mean of this random variable is given by

E [g(Y )] =

∫
g(y)f (y)dy .

For a linear transformation, W = aY + b, there is an exact
solution

E [W ] =

∫
(ay + b)f (y)dy

= a

∫
yf (y)dy + b

∫
f (y)dy

= aE [Y ] + b



Variance of a linear function of Y I

The variance of aY + b is

Var [aY + b] =

∫
(ay + b − aE [Y ]− b)2f (y)dy

=

∫
(ay − aE [Y ])2f (y)dy

= a2Var [Y ].



Often we are interested in more than one observed quantity or
random variable, and we can describe the behavior of these
variables through the joint distribution function.

Two random variables are independent if and only if the joint
density function (continous rv’s) or joint probability mass
function (discrete rv’s) factors as

fY1, Y2(y1, y2) = fY1(y1)fY2(y2).

The joint distribution is the product of marginal distributions
if the variables are independent.



Covariance I

If two variables are not independent the strength of their
linear association is given by the covariance or correlation.

The covariance is the expectation of the cross product
deviation.

Cov [Y1, Y2] = E [(Y1 − µ1)(Y2 − µ2)]

=

∫ ∫
(Y1 − µ1)(Y2 − µ2)f (Y1, Y2)dy1dy2.

An alternative form for the covariance is

Cov [Y1, Y2] = E [Y1Y2]− µ1µ2.



Covariance II

The correlation is

Cor [Y1, Y2] = ρ =
Cov [Y1, Y2]√
Var [Y1]Var [Y2]

.

If Y1 and Y2 are independent, then Cov [Y1,Y2] = 0.

The converse is not necessarily true, but is true for normal
distributions.



Covariance of a linear combination I

Suppose that X,Y,W and Z are random variables, and a,b,c, and d
are real valued constants.
The covariance is linear in both arguments, so that

Cov(aX + bY , cW + dZ ) = Cov(aX , cW )

+Cov(aX , dZ ) + Cov(bY , cW ) + Cov(bY , dZ ).

Constants are brought out front, so that e.g.

Cov(aX , cW ) = acCov(X ,W ).

The covariance of a random variable with a constant is zero

Cov(Y , c) = 0.

The covariance of a random variable with itself is its variance

Cov(Y ,Y ) = E [(Y − µ)(Y − µ)] = E [(y − µ)2] = V (Y )



Mean of a general linear combinations

Where Y1,Y2, . . . ,Yn are random variables, and a1, a2, . . . , an
are real valued constants, we are often interested in linear
combinations of observations

∑n
i=1 aiYi , perhaps as the

estimator of a model parameter.

The expectation operator is linear, so that the mean of a
linear combination is the linear combination of the means

E

[
n∑

i=1

aiYi

]
=

n∑
i=1

aiE [Yi ].



Variance of a general linear combinations

The variance of a linear combination of random variables is
not just a weighted sum of the individual variances, but also
includes terms to account for the covariance between each
pair of variables

Var

[
n∑

i=1

aiYi

]
=

n∑
i=1

n∑
j=1

aiajCov [Yi , Yj ]

=
n∑

i=1

a2i Var [Yi ]

+ 2
∑ n∑

j>i

aiajCov [Yi , Yj ].

If the Yi are uncorrelated, then

Var

[
n∑

i=1

aiYi

]
=

n∑
i=1

a2i Var [Yi ].



Covariance of two general linear combinations

Supose that Y1,Y2, . . . ,Yn are random variables, and
a1, a2, . . . , an and b1, b2, . . . , bn are real valued constants
Given two linear combinations W =

∑n
i=1 aiYi and

Z =
∑n

i=1 biYi , their covariance is

Cov(W ,Z ) = Cov(
n∑

i=1

aiYi ,

n∑
i=1

biYi )

=
∑
i

∑
j

aibjCov(Yi ,Yj)

=
∑
i

aibiVar(Yi )

+
∑
i ̸=j

aibjCov(Yi ,Yj).

If the Yi are uncorrelated,

Cov(W ,Z ) =
∑
i

aibiVar(Yi ).



X is a random variable with mean 1 and variance 16.
Y is a random variable with mean 3.5 and standard deviation 2.
Z is a random variable with mean -2 and variance 9.
The covariance between X and Y is 1.0
The covariance between X and Z is -.5
The covariance between Y and Z is 0



What is the mean of Y + Z? 3.5− 2

What is the variance of Y + Z? 22 + 9

What is the correlation between X and Y ?

Cov(X ,Y )/(
√
V (X )V (Y )) = 1/(4× 2)

What is the mean of Y − Z? 3.5− (−2)

What is the variance of Y − Z?

V (Y ) + (−1)2V (Z ) + 2(1)(−1)Cov(Y ,Z ) = 4 + 9 + 0 = 13

What is the mean of 3X + 2Y ?

3E (X ) + 2E (Y ) = 3(1) + 2(3.5)

What is the variance of 3X + 2Y ?

32V (X )+22V (Y )+2(3)(2)Cov(X ,Y ) = 9(16)+4(22)+12(1)



What is the covariance of Y + X with Y − X?

COV(Y,Y)+COV(X,Y)+COV(Y,-X)+COV(X,-X)
= V(Y)+COV(X,Y)-COV(Y,X)-V(X) = 22 − 16



What is the variance of 2X − 3Y + 4Z?

COV(2X-3Y+4Z,2X-3Y+4Z) =
COV(2X,2X)+COV(2X,-3Y)+COV(2X,4Z)
+ COV(-3Y,2X)+COV(-3Y,-3Y)+COV(-3Y,4Z)
+ COV(4Z,2X)+COV(4Z,-3Y)+COV(4Z,4Z)
= 4V(X)-6COV(X,Y)+8COV(X,Z)-6COV(Y,X)+9V(Y)-
12COV(Y,Z)+8COV(Z,X)-12COV(Z,Y)+16V(Z)
= 4(16)-6(1)+8(-.5)-6(1)+9(22)− 12(0) + 8(−.5)− 12(0) + 16(9)

What is the covariance of X + Y + Z with −X + 2Y − 3Z?


