
1 Use of indicator variables. (Chapter 8)
• let I(A) = 1 if the event A occurs, and I(A) = 0 otherwise.

• I(A) is referred to as the indicator of the event A.

• The notation IA is often used.
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2 One-way Analysis of Variance
Recall Example: A group of 32 rats were randomly assigned to each of 4 diets labelled (A,B,C,and
D). The response is the liver weight as a percentage of body weight. Two rats escaped and another
died, resulting in the following data

A B C D
3.42 3.17 3.34 3.65
3.96 3.63 3.72 3.93
3.87 3.38 3.81 3.77
4.19 3.47 3.66 4.18
3.58 3.39 3.55 4.21
3.76 3.41 3.51 3.88
3.84 3.55 3.96

3.44 3.91
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R code to enter data and calculate sample means by diet.

> weight=c(3.42 ,3.17 ,3.34 ,3.65 ,
+ 3.96 ,3.63 ,3.72 ,3.93 ,
+ 3.87 ,3.38 ,3.81 ,3.77 ,
+ 4.19 ,3.47 ,3.66 ,4.18 ,
+ 3.58 ,3.39 ,3.55 ,4.21 ,
+ 3.76 ,3.41 ,3.51 ,3.88 ,
+ 3.84 ,3.55 ,3.96 ,
+ 3.44 ,3.91 )
> diet=as.factor(c(rep(c("A","B","C","D"),6),"A","B","D","B","D"))
> tapply(weight,diet,FUN=mean) # calculate mean weight by diet

A B C D
3.802857 3.430000 3.598333 3.936250

2.1 One way ANOVA using multiple regression and indicator variables

Indicator Variables
Where there are k groups, define k − 1 indicator variables to identify the k groups. In this example, k = 4.
Index the subjects using a single index i, i = 1, . . . , n

Let
Xi1 = 1 if subject i is in group 1, and 0 otherwise. In the example, variable X1 is the indictor of diet A.
Xi2 = 1 if subject i is in group 2, and 0 otherwise.
Xi3 = 1 if subject i is in group 3, and 0 otherwise.
...
Xi,k−1 = 1 if subject i is in group k − 1, and 0 otherwise.

Multiple regression Model :

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βa−1Xi,k−1 + ϵi

Table of Means

Group ANOVA Regression
mean mean

1 µ1 β0 + β1
2 µ2 β0 + β2

...
k − 1 µk−1 β0 + βk−1

k µk β0
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> IA=ifelse(diet=="A",1,0)
> IB=ifelse(diet=="B",1,0)
> IC=ifelse(diet=="C",1,0)
> ID=ifelse(diet=="D",1,0)
> lmfull=lm(weight~IA+IB+IC)
> summary(lmfull)

Call:
lm(formula = weight ~ IA + IB + IC)

Residuals:
Min 1Q Median 3Q Max

-0.38286 -0.05625 -0.00625 0.12000 0.38714

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.93625 0.06691 58.828 < 2e-16 ***
IA -0.13339 0.09795 -1.362 0.18538
IB -0.50625 0.09463 -5.350 1.51e-05 ***
IC -0.33792 0.10221 -3.306 0.00286 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1893 on 25 degrees of freedom
Multiple R-squared: 0.5654, Adjusted R-squared: 0.5132
F-statistic: 10.84 on 3 and 25 DF, p-value: 9.502e-05

The F statistic and p-value are identical to those using the partial F test to compare the full model to
the reduced model y = β0 + ϵ.

> lmred=lm(weight~1)
> anova(lmfull,lmred)

Analysis of Variance Table

Model 1: weight ~ IA + IB + IC
Model 2: weight ~ 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 25 0.89541
2 28 2.06032 -3 -1.1649 10.841 9.502e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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3 Two way analysis of variance
Example: Tests were conducted to assess the effects of two factors, enginge type, and propellant type, on
propellant burn rate in fired missiles. Three engine types and four propellant types were tested.
Twenty-four missiles were selected from a large production batch. The missiles were randomly split into three
groups of size eight. The first group of eight had engine type 1 installed, the second group had engine type
2, and the third group received engine type 3.‘
Each group of eight was randomly divided into four groups of two. The first such group was assigned
propellant type 1, the second group was assigned propellant type 2, and so on.
Data on burn rate were collected, as follows:

Engine Propellant Type
type 1 2 3 4

1 34.0 30.1 29.8 29.0
32.7 32.8 26.7 28.9

2 32.0 30.2 28.7 27.6
33.2 29.8 28.1 27.8

3 28.4 27.3 29.7 28.8
29.3 28.9 27.3 29.1

The twoway ANOVA model including interaction is

Yijk = µ+ αi + βj + γij + ϵijk

i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . ,K.
In the example, I = 3, J = 4, and K = 2.

• µ is the overall mean

•
∑I

i=1 αi = 0

•
∑J

j=1 βj = 0

•
∑I

i=1 γij = 0 for each j = 1, 2, . . . , J

•
∑J

j=1 γij = 0 for each i = 1, 2, . . . , I

• we assume ϵijk are iid N(0, σ2)

• The sum constraints ensure that there are the same number of parameters as there are cell means, IJ ,
which in the example is 3(4)=12.

• The hypothesis of no interaction between propellant type and engine type is

H0 : γij = 0 for all i, j

• The hypothesis of no main effect of propellant is

H0 : αi = 0 for all i

• The hypothesis of no main effect of engine type is

H0 : βj = 0 for all j
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> propellant=as.factor(rep(c(1:4),6))
> engine=as.factor(c(rep(1,8),rep(2,8),rep(3,8)))
> rate=c(34.0 , 30.1 , 29.8 , 29.0, 32.7 , 32.8 , 26.7 , 28.9
+ ,32.0 , 30.2 , 28.7 , 27.6, 33.2 , 29.8 , 28.1 , 27.8
+ ,28.4 , 27.3 , 29.7 , 28.8, 29.3 , 28.9 , 27.3 , 29.1)

The following uses the builtin lm command to carry out a twoway analysis of variance including main effects
of propellant and engine, and their interaction.

> anova(lm(rate~propellant*engine))

Analysis of Variance Table

Response: rate
Df Sum Sq Mean Sq F value Pr(>F)

propellant 3 40.082 13.3606 10.7530 0.00102 **
engine 2 14.523 7.2617 5.8444 0.01690 *
propellant:engine 6 22.163 3.6939 2.9729 0.05117 .
Residuals 12 14.910 1.2425
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• If testing at level of significance α = .05, the conclusion is no significant interaction (p=.05117), but
siginficant main effects of engine type (p=.0169) and propellant (p=.00102).
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3.1 Multiple regression approach to two way ANOVA

– Let x1, x2, . . . , xI−1 be I − 1 indicator variables coding for a row factor having I levels, where xl
is an indicator for the l’th level of the row factor.

– Let z1, z2, . . . , zJ−1 be J −1 indicator variables coding for a column factor having J levels, where
xj is an indicator for the j’th level of the column factor.

The multiple regression model is

y = β0

+ β1X1 + β2X2 + . . .+ βI−1XI−1

+ βIZ1 + βI+1Z2 + . . .+ β(I−1)+(J−1)ZJ−1

+ βI+J−1X1Z1 + βI+JX1Z2 + . . .+ βIJ−1XI−1ZJ−1 + ϵ

The number of β parameters is 1 (for β0), plus I − 1 for the indicator variables associated with the
row factor, plus J − 1 for the indicator variables associated with the column factor, (I − 1)(J − 1) for
the interaction terms, so IJ = (I − 1)(J − 1) + (I − 1) + (J − 1) + 1, which is the number of means in
the two way layout.
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In the example.

The following carries out a multiple regression to fit the twoway anova model with two qualitative
factors, the first having 3 levels, and second having 4 levels, plus replicate observations. Replicates are
necessary in order to accommodate interactions.

– First define two indicator variables which identify the engine type, and three indicator variables
to identify the propellant type.

– Then fit a regression model which includes these indicators, and the products of the engine type
indicators with the propellant type indicators. The product terms code for interactions of engine
type with propellant type.

– The specific multiple regression model is

y = β0

+ β1X1 + β2X2

+ β3Z1 + β4Z2 + β5Z3

+ β6X1Z1 + β7X1Z2 + β8X1Z3

+ β9X2Z1 + β10X2Z2 + β11X2Z3 + ϵ

– The null hypothesis for the test of no interaction between engine type and propellant type is

H0 : β6 = β7 = . . . β11 = 0

– To carry out the test

∗ first fit the full model
lm(rate∼X1+X2+X3+Z1+Z2+X1*Z1+X2*Z1+X3*Z1+X1*Z2+X2*Z2+X3*Z2),

∗ and then fit the reduced model under the null hypothesis
lm(rate∼X1+X2+X3+Z1+Z2)

∗ and calculate the partial F statistic using the error sums of squares for the two models.

As usual, the test statistic is F =
(SSEred−SSEfull)/r

MSEfull
, and has an F distribution whose

numerator degrees of freedom is the number of parameters set to 0 under the null hypothesis,
and denominator degrees of freedom is the error degrees of freedom for the full model.
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> X1=ifelse(propellant==1,1,0)
> X2=ifelse(propellant==2,1,0)
> X3=ifelse(propellant==3,1,0)
> Z1=ifelse(engine==1,1,0)
> Z2=ifelse(engine==2,1,0)
> #following fits the full model including
> #two indicator variables for engine type
> #three indicator variables for propellant type
> #2(3)=6 products of indicators for interaction of engine and propellant
> lm.full=lm(rate~X1+X2+X3+Z1+Z2+X1*Z1+X2*Z1+X3*Z1+X1*Z2+X2*Z2+X3*Z2)
> #following fits a reduced model without the 6 interaction terms
> lm.noint=lm(rate~X1+X2+X3+Z1+Z2)
> #following carries out the test of no interaction
> anova(lm.full,lm.noint)

Analysis of Variance Table

Model 1: rate ~ X1 + X2 + X3 + Z1 + Z2 + X1 * Z1 + X2 * Z1 + X3 * Z1 +
X1 * Z2 + X2 * Z2 + X3 * Z2

Model 2: rate ~ X1 + X2 + X3 + Z1 + Z2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 12 14.910
2 18 37.073 -6 -22.163 2.9729 0.05117 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

– Recall from Stat2080 that if the interaction is significant (ie reject H0 : no interaction) then it
makes no sense to test for the main effects, as we know that there are significant mean diffences
between levels of each factor but that the mean differences between levels of one factor will depend
on the level of the other factor.

– If the interaction is not significant then proceed to test for the main effects of propellant and
engine type. At the 5% level of signficiance conclude that there are no interactions, so proceed
to test for main effects of engine type and propellant.

∗ to test for effect of engine type, fit a third model without engine type (and of course, without
interaction terms), and compare the SSE for this model to that with main effects of engine
type and propellant.

∗ to test for the effect of propellant, fit a model without propellant, and compare to model
with both engine type and propellant.

∗ because the design is balanced (same number of observaions at each level of engine type
and propellant) the order in which the main effects are entered into the regression model
is irrelevant, which is a major advantage of a balanced design. A consequence is that in
this case, testing for the effect of propellant can also be accomplished by comparing a model
only including propellant type (lm(rate∼X1+X2+X3)), to a model only including the overall
mean β0 (lm(rate∼1)).
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> lm.prop=lm(rate~X1+X2+X3)
> lm.0=lm(rate~1)
> anova(lm.full,lm.noint,lm.prop,lm.0)

Analysis of Variance Table

Model 1: rate ~ X1 + X2 + X3 + Z1 + Z2 + X1 * Z1 + X2 * Z1 + X3 * Z1 +
X1 * Z2 + X2 * Z2 + X3 * Z2

Model 2: rate ~ X1 + X2 + X3 + Z1 + Z2
Model 3: rate ~ X1 + X2 + X3
Model 4: rate ~ 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 12 14.910
2 18 37.073 -6 -22.163 2.9729 0.05117 .
3 20 51.597 -2 -14.523 5.8444 0.01690 *
4 23 91.678 -3 -40.082 10.7530 0.00102 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

– note that the three p-values from the comparison of the multiple regression models are identical
to those using the builtin anova(lm()) procedure with qualitative predictor variables, also known
as factor level predictor variables.
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