
1 Polynomial regression with a single predictor - section 7.1

• The following example simulates from a second order relationship y = β0 + β1x+ β2x
2 + ε, and

fits an incorrect, first order relationship y = β0 + β1x+ ε.

• the QQ plot of the residuals indicates a non-normal short tailed distribution of the residuals,
but is otherwise not indicative of the true relationship
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> x=seq(1,10,length.out=100)

> y=1+2*x+.75*x^2+rnorm(100,0,.3)

> lm.out=lm(y~x)

> lm.resid=residuals(lm.out)

> lm.fits=fitted(lm.out)

> qqnorm(lm.resid,main="normal quantile plot of residuals")

> qqline(lm.resid)
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• the plot of residuals vs fitted values suggests the addition of a quadratic term

> plot(lm.fits,lm.resid,main="plot of residuals vs fitted values",

+ xlab="fitted values",ylab="residuals")

●
●

●
●

●●

●

●●●

●
●

●
●

●
●

●●

●
●

●●●

●●
●
●

●
●●

●

●

●
●
●
●

●●
●●●●

●●
●

●

●

●

●
●
●

●
●●●

●●●
●

●

●●
●

●●
●●

●
●
●
●
●

●●

●
●

●
●

●●

●
●

●●●

●
●●

●
●●

●

●●
●

●

●
●
●

●

0 20 40 60 80

−
5

0
5

10

plot of residuals vs fitted values

fitted values

re
si

du
al

s

3



> lm.out2=lm(y~x+I(x^2))

> lm.resid2=residuals(lm.out2)

> lm.fits2=fitted(lm.out2)

> plot(lm.fits2,lm.resid2,main="Quadratic model",

+ xlab="fitted values",ylab="residuals")
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• note the use of the I() operator in the R model statement to get the polynomial term.

• there is no indication of a problem in the residual plot

• the muliple linear regression model can incorporate higher order polynomial terms. For example

y = β0 + β1x+ β2x
2 + . . .+ βkx

k + ε

5



1.1 Polynomial models in two variables

• suppose we have observations on a dependent variable y and two independent variables x1 and
x2.

• in the following model the mean of y is quadratic in the two variables x1 and x2.

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + ε

.

• Following are some plots of the mean of y for a couple of different choices of β0, . . . , β5.
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• the following plots the surface

E(y) = 800 + 10x1 + 7x2 + −8.5x21 + 5x22 + 4x1x2 + ε

for x1 and x2 both taking values on (-10,10)

> Ey= function(x1,x2,beta=c(800,10,7,-8.5,+5,4)){

+ return(beta[1]+beta[2]*x1+beta[3]*x2+beta[4]*x1^2+

+ beta[5]*x2^2+beta[6]*x1*x2)}

> nrow=60; ncol=60

> x1=seq(-10,10,length.out=nrow)

> x2=seq(-10,10,length.out=ncol)

> y=matrix(rep(0,nrow*ncol),byrow=T,nrow=nrow)

> for (i in 1:nrow){

+ for (j in 1:ncol){

+ y[i,j]=Ey(x1[i],x2[j],beta=c(800,10,7,-8.5,+5,4))}}

> persp(x1,x2,y,xlab="X1",ylab="X2",zlab="y",ticktype="detailed",

+ phi=30,theta=135)
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• the next plot just changes the sign on the coefficient of x22.

E(y) = 800 + 10x1 + 7x2 + −8.5x21 − 5x22 + 4x1x2 + ε

> y2=matrix(rep(0,nrow*ncol),byrow=T,nrow=nrow)

> for (i in 1:nrow){

+ for (j in 1:ncol){

+ y2[i,j]=Ey(x1[i],x2[j],beta=c(800,10,7,-8.5,-5,4))}}

> persp(x1,x2,y2,xlab="X1",ylab="X2",zlab="y",ticktype="detailed",

+ phi=30,theta=135)
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• Becuase the model is quadratic, it can accommodate at most one extreme point (as in the second
figure), or a saddle point (as in the first figure).

• In general, as indicated in chapter 7,

– higher order polynomials can fit surfaces with several local maxima or minima

– they can approximate most nonlinear functions, as they are essentially Taylor approximations
to the true underlying function

– high order polynomial models rarely provide an understanding of a true unknown nonlinear
function

– the estimated coefficients are often imprecise, as the XTX matrix is typically ill conditioned
for a high degree polynomial.
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:
Problem 7.18 provides some data on solubility.

The variables are:

• The response variable y is the negative logarithm of mole fraction solubility.

• x1 = dispersion partial solubility

• x2 = dipolar partial solubility

• x3 = hydrogen bonding Hansen partial solubility

The problem asks to fit a complete quadratic model, and to test for the contribution of all second
order terms. The reduced model retains on ly the linear terms in x1, x2 and x3.
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> data=read.csv("http://bsmith.mathstat.dal.ca/stat3340/Data/data-prob-7-18.csv",header=T)

> data.2ndorder=lm(y~x1+x2+x3+I(x1^2)+I(x2^2)+I(x3^2)+I(x1*x2)+I(x1*x3)+I(x2*x3),data=data)

> data.1storder=lm(y~x1+x2+x3,data=data)

> anova(data.2ndorder,data.1storder)

Analysis of Variance Table

Model 1: y ~ x1 + x2 + x3 + I(x1^2) + I(x2^2) + I(x3^2) + I(x1 * x2) +

I(x1 * x3) + I(x2 * x3)

Model 2: y ~ x1 + x2 + x3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 16 0.059386

2 22 0.095294 -6 -0.035908 1.6124 0.2076

• The F test for the second order terms are not significant.
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> resids.1storder=residuals(data.1storder)

> predict.1storder=predict(data.1storder)

> qqnorm(resids.1storder)

> qqline(resids.1storder)
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• The QQ plot of residuals appears to show some deviation from normality in the tails.
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> plot(resids.1storder,predict.1storder,ylab="residuals",xlab="predicted",main=

+ "residual plot for 1st order model")
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• The plot of residuals vs fitted values shows no obvious trend, and no suggestion that variance of
the residuals is non-constant.
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