

1 Projection onto a vector

- The projection of a vector \mathbf{v} on a vector \mathbf{w} is

$$P_{\mathbf{w}}\mathbf{v} = \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}}\mathbf{w}$$

- eg. suppose $\mathbf{v} = (-1, 3, 4)'$ and $\mathbf{w} = (2, -1, 5)'$. Then $\mathbf{w}'\mathbf{w} = 4 + 1 + 25 = 30$, $\mathbf{v}'\mathbf{w} = -2 - 3 + 20 = 15$ and the projection of \mathbf{v} on \mathbf{w} is $(1, -0.5, 2.5)$.
- eg suppose that \mathbf{v} is as before, but $\mathbf{w} = (1, 0, 0)'$. Then $\mathbf{w}'\mathbf{w} = 1$, $\mathbf{v}'\mathbf{w} = -1$, and the projection of \mathbf{v} on \mathbf{w} is $(-1, 0, 0)'$.
- Similarly the projection of \mathbf{v} on $(0, 1, 0)$ is $(0, 3, 0)$ and the projection of \mathbf{v} on $(0, 0, 1)$ is $(0, 0, 4)$. Projection of \mathbf{v} on co-ordinate vectors just picks off the associated piece of \mathbf{v} .
- Let $\mathbf{x}' = (x_1, x_2, \dots, x_n)$ and let $\mathbf{1}$ be the vector of length n , each of whose elements is equal to 1, the so-called "1 vector". Note that $\mathbf{1}'\mathbf{1} = n$ and $\mathbf{x}'\mathbf{1} = \sum_{i=1}^n x_i$, so that the projection of \mathbf{x} on $\mathbf{1}$ is

$$P_{\mathbf{1}}\mathbf{x} = \frac{\sum_{i=1}^n x_i}{n} \mathbf{1} = \bar{x} \mathbf{1}$$

The result $\bar{x}\mathbf{1}$ is a vector of length n , each element of which is equal to \bar{x} .

- Note that $(\mathbf{v} - P_{\mathbf{w}}\mathbf{v})$ is orthogonal to $P_{\mathbf{w}}\mathbf{v}$, as

$$\begin{aligned} (\mathbf{v} - P_{\mathbf{w}}\mathbf{v})' P_{\mathbf{w}}\mathbf{v} &= (\mathbf{v} - \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}}\mathbf{w})' \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}}\mathbf{w} \\ &= \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}}\mathbf{v}'\mathbf{w} - \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}} \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}}\mathbf{w}'\mathbf{w} \\ &= \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}}\mathbf{v}'\mathbf{w} - \frac{\mathbf{v}'\mathbf{w}}{\mathbf{w}'\mathbf{w}}\mathbf{v}'\mathbf{w} \\ &= 0 \end{aligned}$$

so \mathbf{v} is decomposed into the sum of two orthogonal vectors,

$$\mathbf{v} = P_{\mathbf{w}} + (\mathbf{v} - P_{\mathbf{w}}\mathbf{v})$$

2 Projection on a subspace

- Let \mathbf{v} be a vector in R^3 , $\mathbf{u}_x = (1, 0, 0)$ be the unit vector in the x direction and $\mathbf{u}_y = (0, 1, 0)$ be the unit vector in the y direction.

Note that $\mathbf{u}_x' \mathbf{u}_x = 1$, and similarly for the unit vector in the y direction, and that $\mathbf{u}_x' \mathbf{u}_y = 0$ - they are orthogonal.

The projection of \mathbf{v} on \mathbf{u}_x is $P_{\mathbf{u}_x}(\mathbf{v}) = \mathbf{v}' \mathbf{u}_x \mathbf{u}_x = \alpha \mathbf{u}_x$ where $\alpha = \mathbf{v}' \mathbf{u}_x$.

Similarly, the projection on \mathbf{u}_y is $P_{\mathbf{u}_y}(\mathbf{v}) = \mathbf{v}' \mathbf{u}_y \mathbf{u}_y = \beta \mathbf{u}_y$, where $\beta = \mathbf{v}' \mathbf{u}_y$.

- Let $\mathbf{w} = \alpha \mathbf{u}_x + \beta \mathbf{u}_y$. This is a vector in the (x,y) plane.

Note that any vector in the (x,y) plane can be written in this fashion. The two orthogonal vectors \mathbf{u}_x and \mathbf{u}_y generate a two dimensional subspace - the (x,y) plane.

$$\begin{aligned}
 (\mathbf{v} - \mathbf{w})' \mathbf{w} &= (\mathbf{v} - \alpha \mathbf{u}_x - \beta \mathbf{u}_y)' (\alpha \mathbf{u}_x + \beta \mathbf{u}_y) \\
 &= \alpha \mathbf{v}' \mathbf{u}_x + \beta \mathbf{v}' \mathbf{u}_y - \alpha^2 \mathbf{u}_x' \mathbf{u}_x - \beta^2 \mathbf{u}_y' \mathbf{u}_y - 2\alpha\beta \mathbf{u}_x' \mathbf{u}_y \\
 &= \alpha \mathbf{v}' \mathbf{u}_x + \beta \mathbf{v}' \mathbf{u}_y - \alpha^2 - \beta^2 \\
 &= \alpha^2 + \beta^2 - \alpha^2 - \beta^2 \\
 &= 0
 \end{aligned}$$

- This means that $(\mathbf{v} - \mathbf{w})$ is perpendicular to \mathbf{w} .
- \mathbf{w} is the orthogonal projection of \mathbf{v} on the (x,y) plane.
- Note that \mathbf{w} is the sum of the projections onto the x and y axes. This means that the projection onto the (x,y) plane is the sum of the projection onto the x and y axes.
- We need not use unit vectors in the direction of the co-ordinate axes. Any two orthogonal vectors in the (x,y) plane will work equally well.
- This generalizes - *the perpendicular projection of a vector onto a d dimensional subspace is equal to the sum of the perpendicular projections onto any d orthogonal vectors generating that subspace.*

3 Simple linear regression as a sequence of projections

Let $\mathbf{1}$ and \mathbf{x} be as before, and let $\mathbf{y} = (y_1, y_2, \dots, y_n)$.

We saw that the projection of \mathbf{x} on $\mathbf{1}$ was $\bar{x}\mathbf{1}$. Also:

$$(\mathbf{x} - \bar{x}\mathbf{1})'\mathbf{1} = \sum_{i=1}^n x_i - \bar{x}n = 0$$

which means that $\mathbf{1}$ and $(\mathbf{x} - \bar{x}\mathbf{1})$ are a pair of orthogonal vectors which generate the same subspace as do $\mathbf{1}$ and \mathbf{x} .

Let's look at the projection of \mathbf{y} onto this two dimensional subspace, which, as we have seen, will be the sum of the projections of \mathbf{y} onto $\mathbf{1}$ and $(\mathbf{x} - \bar{x}\mathbf{1})$.

- The projection of \mathbf{y} onto $\mathbf{1}$ is $\bar{y}\mathbf{1}$.
- The projection of \mathbf{y} onto $(\mathbf{x} - \bar{x}\mathbf{1})$ is

$$\frac{\mathbf{y}'(\mathbf{x} - \bar{x}\mathbf{1})}{(\mathbf{x} - \bar{x}\mathbf{1})'(\mathbf{x} - \bar{x}\mathbf{1})}(\mathbf{x} - \bar{x}\mathbf{1}) \quad (1)$$

If you look carefully you will see that

$$\mathbf{y}'(\mathbf{x} - \bar{x}\mathbf{1}) = \sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}$$

and

$$(\mathbf{x} - \bar{x}\mathbf{1})'(\mathbf{x} - \bar{x}\mathbf{1}) = \sum_{i=1}^n (x_i - \bar{x})^2$$

so that (1) is $\hat{\beta}_1\mathbf{x} - \hat{\beta}_1\bar{x}\mathbf{1}$, where $\hat{\beta}_1$ is the estimated slope in simple linear regression.

- Adding the two projections, we see that the projection of \mathbf{y} on the two dimensional subspace generated by $\mathbf{1}$ and $(\mathbf{x} - \bar{x}\mathbf{1})$ is

$$\hat{\beta}_1\mathbf{x} + (\bar{y} - \hat{\beta}_1\bar{x})\mathbf{1}$$

But $(\bar{y} - \hat{\beta}_1 \bar{x})$ is the formula for $\hat{\beta}_0$ in simple linear regression, so we see that the projection of \mathbf{y} on the two dimensional subspace generated by $\mathbf{1}$ and $(\mathbf{x} - \bar{x}\mathbf{1})$ is

$$\hat{\mathbf{y}} = \hat{\beta}_0 \mathbf{1} + \hat{\beta}_1 \mathbf{x}$$

so that $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ for $i = 1, 2, \dots, n$. These are the predicted values in simple linear regression

Taking into account that the subspace generated by $\mathbf{1}$ and $(\mathbf{x} - \bar{x}\mathbf{1})$ is the same subspace as that generated by $\mathbf{1}$ and \mathbf{x} , we see that the vector of predicted values in simple linear regression is the projection of \mathbf{y} onto the two dimensional subspace generated by the vectors $\mathbf{1}$ and \mathbf{x} .