
Simple Linear Regression

1. Model and Parameter Estimation

(a) Suppose our data consist of a collection of n pairs (xi, yi), where xi is an observed value of
variable X and yi is the corresponding observation of random variable Y. The simple linear
regression model

yi = β0 + β1xi + εi

expresses the relationship between variables X and Y. Here β0 denotes the intercept and β1 the
slope of the regression line.

(b) Values for β0 and β1 are estimated from the data by the method of least squares.

(c) From the many straight lines that could be drawn through our data, we find the line that
minimizes the sum of squared residuals, where a residual is the vertical distance between a
point (xi, yi) and the regression line.

(d) Values β̂0 and β̂1 denote the estimates for β0 and β1 that minimize the sum of squared residuals,
or error sum of squares(SSE). The estimates are called least squares estimates.

SSE =
n

∑
i=1

ε2
i =

n

∑
i=1

(yi − β0 − β1xi)
2

(e) SSE is minimized when the partial derivatives of the SSE with respect to the unknowns (β0 and
β1) are set to zero: ∂SSE

∂β0
= 0 and ∂SSE

∂β1
= 0. (You need multivariable calculus [eg Math 2001]

to understand the theoretical details, so we will just take this as a given.) These two conditions
result in the two so-called “normal equations”.

nβ0 + β1

n

∑
i=1

xi =
n

∑
i=1

yi

β0

n

∑
i=1

xi + β1

n

∑
i=1

x2
i =

n

∑
i=1

xiyi

(f) The two normal equations are solved simultaneously to obtain estimates of β0 and β1. These
estimates are:

β̂1 =
∑n

i=1(yi − ȳ)(xi − x̄)
∑n

i=1(xi − x̄)2 =
n ∑n

i=1 xiyi − (∑n
i=1 xi) (∑n

i=1 yi)

n ∑n
i=1 x2

i − (∑n
i=1 xi)

2

β̂0 = ȳ− β̂1 x̄

Looking at the formula for β̂1, and recalling the formula for the correlation coefficient r, it is
easy to see that β̂1 = rsy/sx.

(g) The error variance, σ2, is estimated as

σ̂2 =
SSE
n− 2

=
∑(yi − ŷi)

2

n− 2
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The following example shows the calculations as they would be carried out by hand, in grue-
some detail.
eg: To study the effect of ozone pollution on soybean yield, data were collected at four ozone
dose levels and the resulting soybean seed yield monitored. Ozone dose levels (in ppm)were
reported as the average ozone concentration during the growing season. Soybean yield was
reported in grams per plant.

X Y
Ozone(ppm) Yield (gm/plant)
.02 242
.07 237
.11 231
.15 201

• Estimated values for β0 and β1 are now computed from the data

X Y X2 Y2 XY
.02 242 .0004 58564 4.84
.07 237 .0049 56169 16.59
.11 231 .0121 53361 25.41
.15 201 .0225 40401 30.15

• Column sums: ∑ xi = .35, ∑ yi = 911, ∑ x2
i = .0399, ∑ y2

i = 208, 495, and ∑ xiyi = 76.99

• Means: x̄ = .0875 and ȳ = 227.95

• Intermediate terms:

SSxx = ∑
i
(xi − x̄)2 = ∑

i
x2

i −
(∑ xi)

2

n
= .0399− (.35)2

4
= .009275

SSxy = ∑
i
(xi − x̄)(yi − ȳ) = ∑

i
xiyi −

(∑ xi)(∑ yi)

n
= 76.99− .35(911)

4
= −2.7225

• β̂1 =
SSxy
SSxx

= −293.531, β̂0 = ȳ− β̂1 x̄ = 227.95− (−293.531)(.0875) = 253.434

(h) the least squares regression equation which characterizes the linear relationship between soy-
bean yield and ozone dose is

ŷi = 253.434− 293.531xi

(i) The error variance, σ2, is estimated as MSE.
(j) Residuals: ε̂i = yi − ŷi = yi − (β̂0 + β̂1 ∗ xi)

xi yi ŷi ε̂i = yi − ŷi
.02 242 247.563 -5.563
.07 237 232.887 4.113
.11 231 221.146 9.854
.15 201 209.404 -8.404
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(k) Residual Sum of Squares (In regression problems, the error sum of squares is also known as
the residual sum of squares).

SSE = ∑ ε̂2
i = (−5.563)2 + (4.113)2 + (9.854)2 + (−8.404)2 = 215.59

(l) Mean Squared Error: MSE = SSE
(n−2) = 107.80
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x=c(.02,.07,.11,.15)
y=c(242,237,231,201)
SXX=sum((x-mean(x))^2)
SXY=sum((x-mean(x))*(y-mean(y)))
SYY=sum((y-mean(y))^2)
b1=SXY/SXX
b0=mean(y)-b1*mean(x)
yp=b0+b1*x
resids=y-yp
SSE=sum(resids^2)
SST=SYY
SSR=SST-SSE
SS=c(SSR,SSE,SST)
n=length(y)
df=c(1,n-2,n-1)
MS=SS/df
cbind(SS,df,MS)

Calculations by hand in R

## SS df MS
## [1,] 799.1381 1 799.1381
## [2,] 215.6119 2 107.8059
## [3,] 1014.7500 3 338.2500
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Check calculations using builtin lm, summary and ANOVA commands in R

##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 253.4 -293.5
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4
## -5.563 4.113 9.854 -8.404
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 253.43 10.77 23.537 0.0018 **
## x -293.53 107.81 -2.723 0.1126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.38 on 2 degrees of freedom
## Multiple R-squared: 0.7875,Adjusted R-squared: 0.6813
## F-statistic: 7.413 on 1 and 2 DF, p-value: 0.1126
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 799.14 799.14 7.4127 0.1126
## Residuals 2 215.61 107.81
## 1 2 3 4
## 247.5633 232.8868 221.1456 209.4043
## 1 2 3 4
## -5.563342 4.113208 9.854447 -8.404313
## [1] 215.6119
## [1] 799.1381 215.6119 1014.7500
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Statistical inferences - CI’s and tests for the β’s

2. Standard Errors for Regression Coefficients

(a) Regression coefficient values, β̂0 and β̂1, are point estimates of the true intercept and slope, β0
and β1 respectively.

(b) To develop interval estimates (confidence intervals) for β0 and β1, we need to make assumptions
about the errors in the regression model. In partiular, we assume
ε1, ε2, . . . , εn i.i.d N(0, σ2), in which case:

β̂1 ∼ N(β1,
σ2

SSxx
)

(c) The standard deviation of β̂1 is
√

σ2

SSxx

(d) The value of σ2 is unknown, so the estimator MSE is used in its place to produce the standard
error of the estimate β̂1, as

SEβ̂1
=
√

MSE/SSxx

(e) The standard error for estimate β̂0 is given as:

SEβ̂0
=

√
MSE(

1
n
+

x̄2

SSxx
)

(f) • Standard Errors for regression coefficients in the above example are estimated below.
• SSxx = .009275 and MSE = 107.80
• SEβ̂1

=
√

MSE/SSxx =
√

107.80/.009275 = 107.81

• SEβ̂0
=
√

MSE( 1
n + x̄2

SSxx
) =

√
107.80((1/4) + (.0399/.009275)) = 10.77
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3. Confidence Intervals for Regression Coefficients

(a) Confidence intervals are constructed using the standard errors as follows:

β̂i ± tα/2,n−2SEβ̂i

(b) In the example, 95% confidence intervals for β1 and β0 are computed as follows.

• tα/2,n−2 = t.025,2 = 4.303

• For the slope, β1: −293.531± 4.303(107.81)

(−757.4, 170.3)

• For the intercept, β0: 253.434± 4.303(10.77)

(207.1, 299.8)

95% Confidence intervals in R

• upper 2.5th percentile of t-dist’n with n-2 d.f.

MSE=SSE/(n-2)
t=qt(.975,n-2) #upper .025'th percentile of t with n-2 df.
t

## [1] 4.302653

• 95%confidence interval for β1

SEb1=sqrt(MSE/SXX) #standard error of beta_1
c(b1-t*SEb1,b1+t*SEb1)

## [1] -757.4057 170.3437
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Why does the confidence interval have the correct coverage probability?

Consider the example of the interval for β̂1. We need the following facts:

(a) β̂1 has a normal distribution with mean β1 and unknown variance σ2/SXX. A consequence is

that Z = β̂1−β1
σ/
√

SXX
∼ N(0, 1) (Easy results to prove.)

(b) W = (n−2)MSE
σ2 ∼ χ2

n−2, a chi-squared distribution with n− 2 degrees of freedom. (A bit harder
to prove.)

(c) β̂1 and SSE are independent, implies Z = β̂1−β1
σ/
√

SXX
and (n−2)MSE

σ2 are independent. (Hard to
prove. Details involve considerable matrix algebra, and are contained in appendix C3 of Mont-
gomery et al)

(d) Definition: If Z is standard normal, independent of W which is χ2
ν, the t = Z√

W/ν
is defined to

have a t distribution with ν degrees of freedom.

(e) Then see general notes on constructing confidence intervals.
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4. The correlation between X and Y is estimated by:

r = ∑n
i=1(yi − ȳ)(xi − x̄)√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2

An alternative expression is given by

r = β̂1

√
∑n

i=1(xi − x̄)2√
∑n

i=1(yi − ȳ)2

or

r = β̂1

√
SSxx√
SSyy

where SSxx = ∑n
i=1(xi − x̄)2 and SSyy = ∑n

i=1(yi − ȳ)2 are the sums of squares of the X’s and Y’s,

respectively. Note that SSyy = SST, the total sum of squares. Note that
√

SSxx√
SSyy

= sx
sy

, the ratio of the

standard deviations of the X’s and the Y’s.

• The correlation coefficient lies in the interval [-1,+1].

• If the relationship beween Y and X is perfectly linear and increasing, the correlation will be +1.

• If the relationship is perfectly linear and decreasing, the correlation will be +1. If there is no

• linear relationship between X and Y, the correlation is 0.

• In the example, r = β̂1

√
SSxx√
SSyy

= −293.531
√

.009275√
1016.49

= −.887
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5. Goodness of fit of the regression line is measured by the coefficient of determination, R2. For simple
linear regression R2 = r2.

R2 =
SSR
SST

The Regression Sum of Squares (SSR) is similar to the Treatment Sum of Squares in an ANOVA

problem. It is given by SSR =
SS2

xy
SSxx

. Alternative ways of calculating the residual sum of squares are
to use the additivity relationship (SSR + SSE = SST), or to use one of the following formulas.

R2 = SSR/SST
1− R2 = (SST − SSR)/SST = SSE/SST

SSE = (1− R2)SST

R2 is the fraction of the total variability in y accounted for by the linear regression line, and ranges
between 0 and 1. R2 = 1.00 indicates a perfect linear fit, while R2 = 0.00 is a complete linear non-fit.

In the example:

• SSR =
SS2

xy
SSxx

= (−2.7255)2/.009275 = 800.90

• SST = SSR + SSE = 800.90 + 215.59 = 1016.49

• R2 = SSR/SST = 0.786

• Note that R2 = r2, the square of the correlation coefficient.

• 78.8% of the variability in Y is accounted for by the regression model.

## [1] 799.1381
## [1] -0.8874245
## [1] 0.7875222
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6. Estimating the mean of Y

(a) The estimated mean of Y when x = x∗ is µ̂x∗ = β̂0 + β̂1x∗.

(b)

µ̂x∗ = β̂0 + β̂1x∗ ≈ N
(

β0 + β1x∗, σ2
(

1
n
+

(x∗ − x̄)2

SSxx

))
(c) The standard error of µ̂x∗ is

SEµ̂x∗ =

√
MSE

(
1
n
+

(x∗ − x̄)2

SSxx

)
(d) A confidence interval for the mean µx∗ = β0 + β1x∗ when x = x∗ is given by

µ̂x∗ ± tα/2,n−2SEµ̂x∗

(e) eg. A 95% confidence interval for the mean at x = 0.10 is:

• When x∗ = 0.10, the estimated mean is µ̂.1 = 253.434− 293.531(0.1) = 224.08

• SEµ̂.1 =

√
107.8

(
1
4 + (0.1−.0875)2

.009275

)
= 5.36

• tα/2,n−2 = t.025,2 = 4.303
• margin of error = 4.303(5.36) = 23.08
• 224.08± 23.08
• (201 , 247.16)

95% confidence interval for mu at x0=.10

x0=.10
muhat=b0+b1*x0 # estimate of mean at x=x0
muhat
SEmu=sqrt(MSE)*sqrt(1/n+(x0-mean(x))^2/SXX) #SE of muhat
SEmu
c(muhat-t*SEmu, muhat+t*SEmu)

## [1] 224.0809
## [1] 5.363545
## [1] 201.0034 247.1583
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7. Predicting a New Response Value

We are now interesting in predicting the value of y at a future value x = x∗. In making a prediction
interval for a future observation on y when x = x∗, we need to incorporate two sources of variation
which account for the fact that we are replacing the unknown mean by the estimate β̂0 + β̂1x∗, and
we are replacing the unknown standard deviation σ by the estimate

√
MSE .

y− (β̂0 + β̂1x∗) = (y− (β0 + β1x∗))− (β̂0 + β̂1x∗ − (β0 + β1x∗))

The first term in brackets on the right hand side of this expression has a N(0, σ2) distribution. From
(b) above, the distribution of the second term is

N
(

0, σ2
(

1
n
+

(x∗ − x̄)2

SSxx

))
As y represents a future observation, the distributions of the two terms are independent, and it
follows that the distribution of y− (β̂0 + β̂1x∗) is

N
(

0, σ2
(

1 +
1
n
+

(x∗ − x̄)2

SSxx

))
(a) The predicted value of y is given by ŷ∗ = β̂0 + β̂1x∗

(b) The variance of the above distribution is estimated by:√
MSE

(
1 +

1
n
+

(x∗ − x̄)2

SSxx

)

(c) and the prediction interval for y is given by

β̂0 + β̂1x∗ ± tα/2,n−2

√
MSE

(
1 +

1
n
+

(x∗ − x̄)2

SSxx

)
(d) eg. A 95% prediction interval for y when x = 0.10 is:

• For x∗ = 0.10, y∗ = 253.434− 293.531(0.1) = 224.08

• SEy∗ =

√
107.8

(
1 + 1

4 + (0.1−.0875)2

.009275

)
= 11.69

• tα/2,n−2 = t.025,2 = 4.303

• margin of error = 4.303(11.69) = 50.29

• 224.08± 50.29
• (173.79, 274.37)

SEmu=sqrt(MSE)*sqrt(1+1/n+(x0-mean(x))^2/SXX)
c(muhat-t*SEmu, muhat+t*SEmu)

95% prediction interval for a new observation at x0=.10
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## [1] 173.7980 274.3637
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