y=c(-1,0,1,1,0,-1) one=rep(1,6) x=c(1,1,1,-1,-1,-1) X=cbind(one,x) XpX=t(X)%*%X XpXi=solve(XpX) beta=XpXi%*%t(X)%*%y yhat=X%*%beta SSE=sum((y-yhat)^2) df=(6-2) MSE=SSE/(6-2) t=qt(1-(.05/2)/2,df) CI=0 + c(-1,1)*t*sqrt(MSE)*sqrt(1/6) plot(x,y,type="n",xlim=c(-2,2),ylim=c(-2,2),main="square - simultaneous intervals, circle - simultaneous region", xlab="beta 0",ylab="beta 1") lines(c(CI[1],CI[1]),c(CI[1],CI[2])) lines(c(CI[2],CI[1]),c(CI[2],CI[2])) lines(c(CI[2],CI[1]),c(CI[1],CI[1])) lines(c(CI[2],CI[2]),c(CI[1],CI[2])) Area1=(CI[2]-CI[1])^2 #simultanous confidence region is a circle centered at 0, with radius squared #equal to (1/6)(2)(MSE)(qf(.95,2,df)) r2=(1/6)*2*MSE*qf(.95,2,df) Area2=pi*r2 xl=-sqrt(r2); xh=abs(xl) xplot=seq(xl,xh,length.out=1000) yh=sqrt(r2-xplot^2) yl=-yh lines(xplot,yh); lines(xplot,yl) lmout=lm(y~x) summary(lmout)