
Hypothesis Testing

The basic ingredients of a hypothesis test are
1 the null hypothesis, denoted as Ho

2 the alternative hypothesis, denoted as Ha

3 the test statistic
4 the data
5 the conclusion.



The hypotheses are usually statements about the values of
one or more unknown parameters, denoted as θ here.

The null hypothesis is usually a more restrictive statement
than the alternative hypothesis, e.g. Ho : θ = θo ,
Ha : θ 6= θo .

The burden of proof is on the alternative hypothesis.

We will continue to believe in the null hypothesis unless there
is very strong evidence in the data to refute it.

The test statistic measures agreement of the data with the
null hypothesis.

It is a reasonable combination of the data and the
hypothesized value of the parameter.
It gets bigger when the data agrees less with the null
hypothesis.



When θ̂ is an estimator for θ with standard error sθ̂, a
common test statistic has the form

z =
θ̂ − θo
sθ̂

.

When the data agrees perfectly with the null hypothesis,
z = 0.

When the estimated and hypothesized values for θ become
farther apart, z increases in magnitude.



There are two closely related approaches to testing.

1 One weighs the evidence against Ho .

2 The other ends in a decision to reject or not to reject Ho .



Weighing the evidence

This approach uses the significance probability or P-value,

the probability of obtaining a value of the test statistic as or
more extreme than the value actually observed, assuming that
Ho is true.
This requires knowledge of the distribution of the test statistic
under the assumption that Ho is true, the null distribution .



For the two-sided alternative and test statistic mentioned
above, the P-value is

P = 2Pr(z ≥ |zobserved |)

The factor 2 is required because a priori the sign of zobserved
is not known, and large (in magnitude) negative and positive
values of z give evidence against Ho .

Sometimes we use a one-sided alternative, Ha : θ > θo or
Ha : θ < θo .

In these cases
P = Pr(z ≥ zobserved)

and
P = Pr(z ≤ zobserved)

respectively.



The strength of the evidence against Ho is determined by the
size of the P-value.

A smaller value for P gives stronger evidence.

The logic is that if Ho is true, extreme values for the test
statistic are unlikely, and therefore a possible indication that
Ho is not true.

By convention we draw the following conclusions

P value Strength of evidence against Ho

> .10 none
(.05, .10] weak
(.01, .05] strong

< .01 very strong



When P < .01, for example, we could say that ‘the results are
statistically significant at the .01 level’, or ‘we have very
strong evidence against the null hypothesis’.



Decision approach I

The second approach to hypothesis testing requires a decision
be made whether or not to reject Ho .

One way to do this is to compare the P value to a small
cut-off called the significance level α and to reject Ho if
P ≤ α.

Another way is to choose a rejection region and to reject Ho

if the test statistic falls in this region.

Two types of error are possible with this approach:
1 A type I error occurs if Ho is rejected when it is true.
2 A type II error occurs if Ho is not rejected when it is false.

The type I error is considered to be much more important
than the type II error.



Decision approach II

A common analogy is with a court of law. In murder cases the
presumption of innocence (Ho) is rejected only when the jury
is convinced “beyond a shadow of a doubt” by very strong
evidence (an extreme value for the test statistic).

The type I error would be to convict and hang the accused
(reject Ho) when he is innocent (Ho is true).

The type II error, considered less serious, would be to let a
guilty man go free (don’t reject Ho when it is false).

Recognizing the seriousness of the type I error, the rejection
region is chosen so that the probability of rejecting Ho when it
is true is a small value α.

For example, the test statistic z discussed above frequently
has an approximate normal distribution. For the two-sided
alternative, with α = .05, the rejection region consists of the
values |z | ≥ zα/2 = 1.96.



Decision approach III

When the data is assumed to be normally distributed and the
variance is unknown and estimated by a sample variance, we
use the t distribution.

Finally, the data is collected and the test statistic is computed.

If the test statistic falls in the rejection region we reject Ho at
level α.

Otherwise we do not reject Ho at level α.



Remember that

A rejected Ho may in fact be true.
An Ho which is not rejected is probably not true either (This is
why I never say ‘Ho is accepted’).
A result which is statistically significant (i.e. we have rejected
Ho) may have no practical significance. With a very large
sample size almost any Ho will be rejected.



Hypothesis testing in simple linear regression I

The most common and useful test is whether or not the
relationship between the response and predictor is significant.

H0 : β1 = 0, there is no linear relationship

Ha : β1 6= 0, there is a linear relationship

The alternative is usually two sided.

The test statistic is

T =
β̂1

se(β̂1)

and this is compared to the tn−2 distribution.

Here se(β̂1) = s/
√
SXX .

On occasion, we specify a value β1,0 other than 0 in the null
hypothesis.



Hypothesis testing in simple linear regression II

Then the test statistic becomes

T =
β̂1 − β1,0
se(β̂1)

.

One can also test hypotheses about the intercept

H0 : β0 = β0,0,

Ha : β0 6= β0,0.

Often we are interested in whether the intercept is zero, so
β0,0 = 0.

The test statistic is

T =
β̂0 − β0,0
se(β̂0)

and this is compared to the tn−2 distribution.



Tests on the mean of Y at x0

H0 : µx0 = µx0,0,

Ha : µx0 6= µx0,0

The test statistic is

T =
µ̂x0 − µx0,0
se(µ̂x0)

and this is compared to the tn−2 distribution.


