Hypothesis Testing

- The basic ingredients of a hypothesis test are
 - (1) the null hypothesis, denoted as H_o
 - the alternative hypothesis, denoted as H_a
 - the test statistic
 - 4 the data
 - the conclusion.

- The hypotheses are usually statements about the values of one or more unknown parameters, denoted as θ here.
- The null hypothesis is usually a more restrictive statement than the alternative hypothesis, e.g. H_o : $\theta = \theta_o$, $H_a: \theta \neq \theta_o$.
- The burden of proof is on the alternative hypothesis.
- We will continue to believe in the null hypothesis unless there is very strong evidence in the data to refute it.
- The test statistic measures agreement of the data with the null hypothesis.
 - It is a reasonable combination of the data and the hypothesized value of the parameter.
 - It gets bigger when the data agrees less with the null hypothesis.

• When $\hat{\theta}$ is an estimator for θ with standard error $s_{\hat{\theta}}$, a common test statistic has the form

$$\mathsf{z} = rac{\hat{ heta} - heta_o}{s_{\hat{ heta}}}.$$

- When the data agrees perfectly with the null hypothesis, z = 0.
- When the estimated and hypothesized values for θ become farther apart, z increases in magnitude.

There are two closely related approaches to testing.

- One weighs the evidence against H_o .
- **2** The other ends in a decision to reject or not to reject H_o .

- This approach uses the significance probability or *P*-value,
 - the probability of obtaining a value of the test statistic as or more extreme than the value actually observed, assuming that H_o is true.
 - This requires knowledge of the distribution of the test statistic under the assumption that H_o is true, the *null distribution*.

• For the two-sided alternative and test statistic mentioned above, the *P*-value is

$$P = 2Pr(z \ge |z_{observed}|)$$

- The factor 2 is required because a priori the sign of $z_{observed}$ is not known, and large (in magnitude) negative and positive values of z give evidence against H_o .
- Sometimes we use a one-sided alternative, H_a: θ > θ_o or H_a: θ < θ_o.
- In these cases

$$P = Pr(z \ge z_{observed})$$

and

$$P = Pr(z \leq z_{observed})$$

respectively.

- The strength of the evidence against *H*_o is determined by the size of the *P*-value.
 - A smaller value for *P* gives stronger evidence.
- The logic is that if H_o is true, extreme values for the test statistic are unlikely, and therefore a possible indication that H_o is not true.
- By convention we draw the following conclusions

P value	Strength of evidence against H_o
> .10	none
(.05, .10]	weak
(.01, .05]	strong
< .01	very strong

• When *P* < .01, for example, we could say that 'the results are statistically significant at the .01 level', or 'we have very strong evidence against the null hypothesis'.

Decision approach I

- The second approach to hypothesis testing requires a decision be made whether or not to reject H_o .
- One way to do this is to compare the P value to a small cut-off called the significance level α and to reject H_o if P ≤ α.
- Another way is to choose a rejection region and to reject H_o if the test statistic falls in this region.
- Two types of error are possible with this approach:
 - **(**) A type I error occurs if H_o is rejected when it is true.
 - **2** A type II error occurs if H_o is not rejected when it is false.
- The type I error is considered to be much more important than the type II error.

Decision approach II

- A common analogy is with a court of law. In murder cases the presumption of innocence (H_o) is rejected only when the jury is convinced "beyond a shadow of a doubt" by very strong evidence (an extreme value for the test statistic).
- The type I error would be to convict and hang the accused (reject *H*_o) when he is innocent (*H*_o is true).
- The type II error, considered less serious, would be to let a guilty man go free (don't reject *H*_o when it is false).
- Recognizing the seriousness of the type I error, the rejection region is chosen so that the probability of rejecting H_o when it is true is a small value α .
- For example, the test statistic z discussed above frequently has an approximate normal distribution. For the two-sided alternative, with $\alpha = .05$, the rejection region consists of the values $|z| \ge z_{\alpha/2} = 1.96$.

- When the data is assumed to be normally distributed and the variance is unknown and estimated by a sample variance, we use the *t* distribution.
- Finally, the data is collected and the test statistic is computed.
- If the test statistic falls in the rejection region we reject H_o at level α .
- Otherwise we do not reject H_o at level α .

Remember that

- A rejected H_o may in fact be true.
- An *H_o* which is not rejected is probably not true either (This is why I *never* say '*H_o* is accepted').
- A result which is statistically significant (*i.e.* we have rejected H_o) may have no practical significance. With a very large sample size almost any H_o will be rejected.

Hypothesis testing in simple linear regression I

- The most common and useful test is whether or not the relationship between the response and predictor is significant.
- H_0 : $\beta_1 = 0$, there is no linear relationship
- H_a : $\beta_1 \neq 0$, there is a linear relationship
- The alternative is usually two sided.
- The test statistic is

$$T = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$$

and this is compared to the t_{n-2} distribution.

• Here
$$se(\hat{\beta}_1) = s/\sqrt{S_{XX}}$$
.

 On occasion, we specify a value β_{1,0} other than 0 in the null hypothesis.

Hypothesis testing in simple linear regression II

• Then the test statistic becomes

$$T = rac{\hat{eta}_1 - eta_{1,0}}{se(\hat{eta}_1)}.$$

• One can also test hypotheses about the intercept

•
$$H_0: \beta_0 = \beta_{0,0},$$

•
$$H_a$$
: $\beta_0 \neq \beta_{0,0}$.

- Often we are interested in whether the intercept is zero, so $\beta_{0,0} = 0$.
- The test statistic is

$$T = \frac{\hat{\beta}_0 - \beta_{0,0}}{se(\hat{\beta}_0)}$$

and this is compared to the t_{n-2} distribution.

- $H_0: \mu_{x_0} = \mu_{x_0,0}$,
- H_a : $\mu_{x_0} \neq \mu_{x_0,0}$
- The test statistic is

$$T = rac{\hat{\mu}_{x_0} - \mu_{x_0,0}}{se(\hat{\mu}_{x_0})}$$

and this is compared to the t_{n-2} distribution.