
Transformations

A variance stabilizing transformation may be useful when
the variance of y appears to depend on the value of the
regressor variables, or on the mean of y . Table 5.1 lists some
commonly used variance stabilizing transformations. For
example, if the variance of y is proportional to the mean of y ,
it is useful to consider transforming to

√
y .

Why does this work? In general, if y has mean µy and
variance σ2y , then a function h(y) has approximate mean
h(µy ) and variance approximately equal to (h′(µy ))2σ2y .
(Proof of this is given in Stat 4066 and/or 5067, using a
Taylor series approximation.)



Example: Suppose Y has a Poisson distribution with mean
µY = µ and variance σ2Y = µ. let Z = h(Y ) =

√
Y . Then

h′(Y ) = .5Y−1/2, so that h′(µ) = .5µ−1/2, and the variance
of Z is approximately (h′(µy ))2σ2y = (.5µ−1/2)2µ = .25. The
variance stabilizing transformation for the Poisson distribution
is the

√
transform.

Regression type models where Y has a Poisson distribution
are a subset of generalized linear models. GLM’s are the topic
of chapter 13 in Montgomery, Peck and Vining (which we will
not cover) and are the main topic of Stat 4620. Some of the
theory of GLM’s is discussed in Stat 4066. The GLM family
also includes binomial response variables.



Intrinsically linear models

Some models are intrinsically linear, and can be appropriately
transformed to give a linear relation.

For example, if V = kHW ,

then log(V ) = log(k) + log(H) + log(W ),

In Economics, the Cobb-Douglas production function is
P = kLαCγε,

the model log(P) = β0 + β1log(L) + β2log(C ) + log(ε) may
be a useful regression model.

This will typically assume that log(ε) has a normal
distribution.



In biochemistry, where y is reaction rate and x is substrate
concentration, the Michaelis-Menten equation states that

y =
Vmaxx

Km + x

Vmax and Km are parameters to be estimated.

Note that as x →∞, y → Vmax .

The Lineweaver-Burk plot, or double reciprocal plot, is a plot
of 1/y vs 1/x , provides a convenient means of estimating the
two model parameters.
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Find the least squares estimators of β0 and β1 and transform
to get estimators of Km and Vmax .



Nowadays biochemists fit a nonlinear regression (model is
nonlinear in x)

yi =
Vmaxxi
Km + xi

+ εi

assuming the εi are a sample from a N(0, σ2) population,

Nonlinear regression is discussed in Chapter 12 of
Montgomery, Peck and Vining. We will not discuss this topic.

but the Lineweaver-Burk plot is still often included in research
papers in order to visualize the linearized relationship, and
allow quick ballpark estimates. (ie the x intercept is −1/Km

and the y intercept is 1/Vmax)



If the relationship between y and a regressor appears to be
nonlinear, buthe assumptions of i.i.d. N(0, σ2) errors appears
to be approximately satisfied, then it may be more appropriate
to transform the regressor variable x rather than y .

The Box-Cox transformation gives a class of transformations
which are meant to simultaneously correct for nonnormality
and/or nonconstant variance, and are described in section
5.4.1. The response variable of the Box-Cox transformation is

yλ − 1

λẏλ−1

where ẏ is the geometric mean of the observations. You are
not responsible for the Box-Cox transformation.



Weighted least squares

Weighted least squares can be used to estimate the
parameters of regression models with nonconstant error
variance. This is the topic of section 5.5.1.
If y = Xβ + ε, with E (ε) = 0 and Cov(ε) = σ2V,

the generalized least squares estimator is given by

β̂ = (XTV−1X)−1XTV−1y

with covariance matrix

Cov(β̂) = σ2(XTV−1X)−1

This works because:
the covariance matrix of V−1/2ε is σ2I, where
V−1/2V−1/2 = V−1

so we transform the model to

(V−1/2y) = (V−1/2X)β + V−1/2ε

and then carry out least squares using the data (V−1/2y) and
(V−1/2X).



Gauss-Markov theorem

The Gauss-Markov theorem (appendix C.11) states that β̂ is the
minimum variance unbiased estimator of β, also known as the best
linear unbiased estimator (BLUE).


