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Example of constructing an Added Variable Plot

• Used when adding a variable X2 to a model which already contains one or
more variables in X1.

• Uses a a sequential three step procedure.

1. Regress y on X1 to get residuals e1.

2. Regress X2 on X1 to get residuals e2

3. A third regression of e1 on e2 has intercept 0, estimated slope equal to
the coefficient of β2 in the regression lm(y ∼ x1 +x2), and p-value equal
to that for β2 in anova(lm(y ∼ x1 + x2))

• The scatterplot of e1 vs e2 is called an added variable plot.

• It is used the help decide what function of X2 should be added to the
regression (ie linear, quadratic, etc), in the same way that a scatterplot of
y vs X2 would be used.

• it captures the marginal relationship between y and X2 given that X1 is
already accounted for.
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Example: trees data

• for a cylinder of diameter d, and height h, the volume equals π(d/2)2h,
which motivates fitting a transformed model (y ∼ x1 + x2) where y =
log(V olume), x1 = log(Girth) and x2 = log(Height).

• Regress y on x1 to get residuals e1.

> attach(trees)

> y=log(Volume)

> x1=log(Girth)

> x2=log(Height)

> pairs(cbind(y,x1,x2))

> lm.x1=lm(y~x1)

> summary(lm.x1)

Call:

lm(formula = y ~ x1)

Residuals:

Min 1Q Median 3Q Max

-0.205999 -0.068702 0.001011 0.072585 0.247963

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.35332 0.23066 -10.20 4.18e-11 ***

x1 2.19997 0.08983 24.49 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.115 on 29 degrees of freedom

Multiple R-squared: 0.9539, Adjusted R-squared: 0.9523

F-statistic: 599.7 on 1 and 29 DF, p-value: < 2.2e-16
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• Note the coefficient of x1 from the regression.
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> anova(lm.x1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 7.9254 7.9254 599.72 < 2.2e-16 ***

Residuals 29 0.3832 0.0132

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• Note the regression and error sum of squares for future comparison.
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• should x2 be added to the model, and if so, should a linear function of x2
be used?

– calculate the residuals e1

– calculate the residuals e2

– plot e1 vs e2 to deduce the form of the relationship

> e1=residuals(lm.x1)

> summary(lm.x1)

Call:

lm(formula = y ~ x1)

Residuals:

Min 1Q Median 3Q Max

-0.205999 -0.068702 0.001011 0.072585 0.247963

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.35332 0.23066 -10.20 4.18e-11 ***

x1 2.19997 0.08983 24.49 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.115 on 29 degrees of freedom

Multiple R-squared: 0.9539, Adjusted R-squared: 0.9523

F-statistic: 599.7 on 1 and 29 DF, p-value: < 2.2e-16

> lm.x2=lm(x2~x1)

> summary(lm.x2)

Call:

lm(formula = x2 ~ x1)

Residuals:

Min 1Q Median 3Q Max

-0.181448 -0.037403 0.007068 0.031853 0.126194

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.82974 0.14833 25.819 < 2e-16 ***

x1 0.19454 0.05777 3.367 0.00216 **

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07393 on 29 degrees of freedom

Multiple R-squared: 0.2811, Adjusted R-squared: 0.2563

F-statistic: 11.34 on 1 and 29 DF, p-value: 0.002155

> e2=residuals(lm.x2)

> lm.e1e2=lm(e1~e2-1)

> summary(lm.e1e2)

Call:

lm(formula = e1 ~ e2 - 1)

Residuals:

Min 1Q Median 3Q Max

-0.168561 -0.048488 0.002431 0.063637 0.129223

Coefficients:

Estimate Std. Error t value Pr(>|t|)

e2 1.1171 0.1975 5.656 3.66e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07863 on 30 degrees of freedom

Multiple R-squared: 0.5161, Adjusted R-squared: 0.4999

F-statistic: 31.99 on 1 and 30 DF, p-value: 3.658e-06

> anova(lm.e1e2)

Analysis of Variance Table

Response: e1

Df Sum Sq Mean Sq F value Pr(>F)

e2 1 0.19778 0.197780 31.992 3.658e-06 ***

Residuals 30 0.18546 0.006182

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(e2,e1,main="Added variable plot for X2")

> abline(lm.e1e2)
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• From the added variable plot, a linear term in X2 seems appropriate. If the
added variable plot showed a quadratic trend, that would suggest adding a
predictor X2

2 in addition to the predictor X1.

• Note the coefficient of X2 in the regression of e1 on e2.

• Verify that if we substitute for e1 and e2 in e1 = α̂e2 then we recover the
least squares estimates for the full model including both x1 and x2.
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> lm.x1x2=lm(y~x1+x2)

> summary(lm.x1x2)

Call:

lm(formula = y ~ x1 + x2)

Residuals:

Min 1Q Median 3Q Max

-0.168561 -0.048488 0.002431 0.063637 0.129223

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***

x1 1.98265 0.07501 26.432 < 2e-16 ***

x2 1.11712 0.20444 5.464 7.81e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08139 on 28 degrees of freedom

Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761

F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16

> anova(lm.x1x2)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 7.9254 7.9254 1196.53 < 2.2e-16 ***

x2 1 0.1978 0.1978 29.86 7.805e-06 ***

Residuals 28 0.1855 0.0066

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• The error sum of squares and degrees of freedom for the single variable
regression have been partitioned into a new error sum of squares (with one
less degree of freedom) and a sequential sum of squares S(β2|β1) for X2

given that X1 is already in the model, this having one degree of freedom.
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– The added variable plot suggested a linear function of X2 to be included,
but we still need to assess overall model adequacy.

> par(mfrow=c(2,1))

> qqnorm(residuals(lm.x1x2))

> qqline(residuals(lm.x1x2))

> plot(residuals(lm.x1x2),fitted(lm.x1x2),main="plot of residuals vs fitted values")
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Normal Q−Q Plot

Theoretical Quantiles
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– residuals appear normally distributed

– no evidence of a trend in plot of residuals vs fitted values

– no suggestion from he latter plot that variance changes with the mean
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CI for the mean of y using “predict”

For the model y = β0 + β1x1 + β2x2 + ε, find a 95% CI for the mean of
y when x1 = log(10) and x2 = log(75)

> predict.out=predict(lm.x1x2,

+ newdata=data.frame(x1=log(10), x2=log(75)),

+ interval="confidence")

> predict.out

fit lwr upr

1 2.75677 2.709063 2.804477


