Let **A** be a symmetric $k \times k$ matrix of constants, **a** be a $k \times 1$ vector of constants, and β be a $k \times 1$ vector of variables.

• Let $z = \mathbf{a}^T \boldsymbol{\beta}$. The vector of partial derivatives of z with respect to the elements of $\boldsymbol{\beta}$ is

$$\frac{\partial z}{\partial \beta} = \frac{\partial \mathbf{a}^T \beta}{\partial \beta} = \left(\frac{\partial z}{\partial \beta_1}, \frac{\partial z}{\partial \beta_2}, \dots, \frac{\partial z}{\partial \beta_k}\right)^T = \mathbf{a}$$

• Let $z = \beta^T \mathbf{A} \beta$. The vector of partial derivatives of z with respect to the elements of β is

$$\frac{\partial \boldsymbol{\beta}^{\mathsf{T}} \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}} = 2 \mathbf{A} \boldsymbol{\beta}$$