Hypergeometric functions, part II Special Functions Reading Group

Daniele Turchetti
Dalhousie University

February 24, 2020

The Hypergeometric Series

Recall the (Euler) hypergeometric series:

$$
{ }_{2} F_{1}\left(\begin{array}{l}
a, b \\
c
\end{array} ; x\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} x^{n} .
$$

This defines a holomorphic function in $D(0,1) \subset \mathbf{C}$.

The Hypergeometric Series

Recall the (Euler) hypergeometric series:

$$
{ }_{2} F_{1}\left(\begin{array}{l}
a, b \\
c
\end{array} ; x\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} x^{n} .
$$

This defines a holomorphic function in $D(0,1) \subset \mathbf{C}$.
It is a solution of the hypergeometric equation

$$
E(a, b, c): x(1-x) \frac{d^{2} y}{\mathrm{~d} x^{2}}+[c-(a+b+1) x] \frac{d y}{\mathrm{~d} x}-a b y=0,
$$

which is a linear homogeneous ODE with regular singularities at $0,1, \infty$.

The Hypergeometric Series

Recall the (Euler) hypergeometric series:

$$
{ }_{2} F_{1}\left(\begin{array}{l}
a, b \\
c
\end{array} ; x\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} x^{n} .
$$

This defines a holomorphic function in $D(0,1) \subset \mathbf{C}$.
It is a solution of the hypergeometric equation

$$
E(a, b, c): x(1-x) \frac{d^{2} y}{\mathrm{~d} x^{2}}+[c-(a+b+1) x] \frac{d y}{\mathrm{~d} x}-a b y=0,
$$

which is a linear homogeneous ODE with regular singularities at $0,1, \infty$.

Fact

Every second-order ODE with three regular singularities can be transformed into a hypergeometric one.

Monodromy of ODE with regular singular points

The space of solutions of $E(a, b, c)$ around a point $x_{0} \in \mathbf{C}-\{0,1\}$ is a 2 -dimensional vector space over \mathbf{C}. Any such solution can be analytically continued along every path γ in $\mathbf{C}-\{0,1\}$.

Monodromy of ODE with regular singular points

The space of solutions of $E(a, b, c)$ around a point $x_{0} \in \mathbf{C}-\{0,1\}$ is a 2 -dimensional vector space over \mathbf{C}. Any such solution can be analytically continued along every path γ in $\mathbf{C}-\{0,1\}$.

Let γ be a loop starting and ending in x_{0}, and y_{1}, y_{2} two linearly independent solutions of $E(a, b, c)$ around x_{0}. We have:

$$
\binom{\gamma_{*} y_{1}}{\gamma_{*} y_{2}}=M_{\gamma}\binom{y_{1}}{y_{2}} .
$$

The correspondence $\gamma \mapsto M_{\gamma}$ realizes a group representation

$$
\rho: \pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right) \longrightarrow G L_{2}(\mathbf{C})
$$

called monodromy representation. It is uniquely associated with $E(a, b, c)$ up to conjugation in $\mathrm{GL}_{2}(\mathbf{C})$.

Monodromy of ODE with regular singular points

The space of solutions of $E(a, b, c)$ around a point $x_{0} \in \mathbf{C}-\{0,1\}$ is a 2 -dimensional vector space over \mathbf{C}. Any such solution can be analytically continued along every path γ in $\mathbf{C}-\{0,1\}$.

Let γ be a loop starting and ending in x_{0}, and y_{1}, y_{2} two linearly independent solutions of $E(a, b, c)$ around x_{0}. We have:

$$
\binom{\gamma_{*} y_{1}}{\gamma_{*} y_{2}}=M_{\gamma}\binom{y_{1}}{y_{2}} .
$$

The correspondence $\gamma \mapsto M_{\gamma}$ realizes a group representation

$$
\rho: \pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right) \longrightarrow G L_{2}(\mathbf{C})
$$

called monodromy representation. It is uniquely associated with $E(a, b, c)$ up to conjugation in $\mathrm{GL}_{2}(\mathbf{C})$.

The (conjugacy class of) $\rho\left(\pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right)\right)$ is the monodromy group of $E(a, b, c)$.

Another solution of $E(a, b, c)$

Let D be the differential operator $y \mapsto x \frac{d y}{d x}$.
Then $E(a, b, c)$ is

$$
\left[(a+D)(b+D)-(c+D)(1+D) \frac{1}{x}\right] y=0
$$

The equality of differential operators

$$
D x^{s}=x^{5}(s+D)
$$

yields
$\left[(a+D)(b+D)-(c+D)(1+D) \frac{1}{x}\right] x^{1-c}=x^{1-c}\left[(a+1-c+D)(b+1-c+D)-(1+D)(2-c+D) \frac{1}{x}\right]$.
Then, $x^{1-c}{ }_{2} F_{1}\binom{a+1-c, b+1-c}{2-c}$ is a second solution of $E(a, b, c)$ when $c \notin \mathbf{N}$.

Solutions around 1

The hypergeometric equation

$$
E(a, b, c): x(1-x) \frac{d^{2} y}{\mathrm{~d} x^{2}}+[c-(a+b+1) x] \frac{d y}{\mathrm{~d} x}-a b y=0
$$

for $\xi=1-x$ becomes

$$
\left.\xi(1-\xi) \frac{d^{2} y}{d \xi^{2}}+[a+b+1-c-(a+b+1) \xi)\right] \frac{d y}{d \xi}-a b y=0
$$

Solutions around 1

The hypergeometric equation

$$
E(a, b, c): x(1-x) \frac{d^{2} y}{\mathrm{~d} x^{2}}+[c-(a+b+1) x] \frac{d y}{\mathrm{~d} x}-a b y=0
$$

for $\xi=1-x$ becomes

$$
\left.\xi(1-\xi) \frac{d^{2} y}{d \xi^{2}}+[a+b+1-c-(a+b+1) \xi)\right] \frac{d y}{d \xi}-a b y=0
$$

Hence it is hypergeometric, with solution ${ }_{2} F_{1}\left(\begin{array}{c}a, \\ a+b+1-c\end{array}{ }^{b} ; 1-x\right)$.

Solutions around 1

The hypergeometric equation

$$
E(a, b, c): x(1-x) \frac{d^{2} y}{\mathrm{~d} x^{2}}+[c-(a+b+1) x] \frac{d y}{\mathrm{~d} x}-a b y=0
$$

for $\xi=1-x$ becomes

$$
\left.\xi(1-\xi) \frac{d^{2} y}{d \xi^{2}}+[a+b+1-c-(a+b+1) \xi)\right] \frac{d y}{d \xi}-a b y=0 .
$$

Hence it is hypergeometric, with solution ${ }_{2} F_{1}\left(\begin{array}{c}a, \\ a+b+1-c\end{array}{ }^{b} ; 1-x\right)$.
As before, another solution can be found:

$$
(1-x)^{c-a-b}{ }_{2} F_{1}\left(\begin{array}{c}
c-a, \\
c+1-a-b
\end{array} \quad ; 1-x\right) .
$$

for $c-a-b \notin \mathbf{N}$

Solutions around ∞

The hypergeometric equation

$$
E(a, b, c):\left[(a+D)(b+D)-(c+D)(1+D) \frac{1}{x}\right] y=0
$$

for $\xi=\frac{1}{x}$ becomes

$$
[(a-D)(b-D)-(c-D)(1-D) \xi] y=0
$$

Solutions around ∞

The hypergeometric equation

$$
E(a, b, c):\left[(a+D)(b+D)-(c+D)(1+D) \frac{1}{x}\right] y=0
$$

for $\xi=\frac{1}{x}$ becomes

$$
[(a-D)(b-D)-(c-D)(1-D) \xi] y=0
$$

We have

$$
\begin{array}{r}
{[(a-D)(b-D)-(c-D)(1-D) \xi] \xi^{a}} \\
=(-a+D)(-b+D) \xi^{a}-(-c+D)(-1+D) \xi^{1+a} \\
=-\xi^{1+a}\left[(1+a-c+D)(a+D)-(1+D)(a-b+1+D) \frac{1}{\xi}\right] .
\end{array}
$$

Solutions around ∞

The hypergeometric equation

$$
E(a, b, c):\left[(a+D)(b+D)-(c+D)(1+D) \frac{1}{x}\right] y=0
$$

for $\xi=\frac{1}{x}$ becomes

$$
[(a-D)(b-D)-(c-D)(1-D) \xi] y=0
$$

We have

$$
\begin{array}{r}
{[(a-D)(b-D)-(c-D)(1-D) \xi] \xi^{a}} \\
=(-a+D)(-b+D) \xi^{a}-(-c+D)(-1+D) \xi^{1+a} \\
=-\xi^{1+a}\left[(1+a-c+D)(a+D)-(1+D)(a-b+1+D) \frac{1}{\xi}\right] .
\end{array}
$$

Two solutions are:
$\xi^{a}{ }_{2} F_{1}\left(\begin{array}{c}a, \\ a-b+1\end{array} 1+a-c ; \xi\right)$ and $\xi^{b}{ }_{2} F_{1}\left(\begin{array}{c}b, \\ b-a+1\end{array} \quad-{ }^{b-c} ; \xi\right)$
for $a-b \notin \mathbf{N}$.

Connnection matrices

We found six solutions of $E(a, b, c)$:

- f_{01}, f_{02} continuation in $\mathbf{C} \backslash\{(-\infty, 0] \cup[1,+\infty)\}$ of the solutions around 0
- f_{11}, f_{12} continuation in $\mathbf{C} \backslash(-\infty, 1]$ of the solutions around 1
- $f_{\infty 1}, f_{\infty 2}$ continuation in $\mathbf{C} \backslash[0,+\infty)$ of the solutions around ∞ Suppose $a, b, c \in \mathbf{R}$. Then the solutions are real-valued over the real part of their domains of definition.

Connnection matrices

We found six solutions of $E(a, b, c)$:

- f_{01}, f_{02} continuation in $\mathbf{C} \backslash\{(-\infty, 0] \cup[1,+\infty)\}$ of the solutions around 0
- f_{11}, f_{12} continuation in $\mathbf{C} \backslash(-\infty, 1]$ of the solutions around 1
- $f_{\infty 1}, f_{\infty 2}$ continuation in $\mathbf{C} \backslash[0,+\infty)$ of the solutions around ∞ Suppose $a, b, c \in \mathbf{R}$. Then the solutions are real-valued over the real part of their domains of definition.

In the domain $\mathbb{H}_{+}=\{x \in \mathbf{C}: \operatorname{Im}(x)>0\}$, these solutions lie in a 2-dimensional \mathbf{C}-vector space. Hence there are matrices M_{+}^{10} and $M_{+}^{\infty 0}$ in $G L_{2}(\mathbf{C})$ such that

$$
\begin{aligned}
& \binom{f_{01}}{f_{02}}=M_{+}^{10}\binom{f_{11}}{f_{12}} \\
& \binom{f_{01}}{f_{02}}=M_{+}^{\infty 0}\binom{f_{\infty 1}}{f_{\infty 2}}
\end{aligned}
$$

called connection matrices.

Schwarz triangles

Define continuous maps f_{i} :

$$
f_{i}(x):=\left[f_{i 1}(x): f_{i 2}(x)\right] \in \mathbf{P}^{1}(\mathbf{C}) \quad \text { for } i=0,1, \infty .
$$

Schwarz triangles

Define continuous maps f_{i} :

$$
f_{i}(x):=\left[f_{i 1}(x): f_{i 2}(x)\right] \in \mathbf{P}^{1}(\mathbf{C}) \quad \text { for } i=0,1, \infty
$$

Note:

- $f_{0}((0,1))=\left(f_{0}(0), f_{0}(1)\right)$
- $f_{1}((1, \infty))=\left(f_{1}(1), f_{1}(\infty)\right)$
- $f_{\infty}((-\infty, 0))=\left(f_{\infty}(-\infty), f_{\infty}(0)\right)$
and these are real intervals.

Schwarz triangles

Define continuous maps f_{i} :

$$
f_{i}(x):=\left[f_{i 1}(x): f_{i 2}(x)\right] \in \mathbf{P}^{1}(\mathbf{C}) \quad \text { for } i=0,1, \infty
$$

Note:

- $f_{0}((0,1))=\left(f_{0}(0), f_{0}(1)\right)$
- $f_{1}((1, \infty))=\left(f_{1}(1), f_{1}(\infty)\right)$
- $f_{\infty}((-\infty, 0))=\left(f_{\infty}(-\infty), f_{\infty}(0)\right)$
and these are real intervals.

In $\mathbb{H}_{+}, f_{0}, f_{1}, f_{\infty}$ are related by linear fractional transformations (given by the connection matrices), that send lines to circles and lines: the boundary of $f_{i}\left(\mathbb{H}_{+}\right)$is a "triangle with circular sides", a.k.a. a Schwarz triangle.

Analytic continuation along paths

Question
What happens when we extend solutions along paths?

Analytic continuation along paths

Question
What happens when we extend solutions along paths?

Let's define $\mathbb{H}_{-}=\{x \in \mathbf{C}: \operatorname{Im}(x)<0\}$.
The map f_{0} can be extended to \mathbb{H}_{-}through any of the three connected components of $\mathbf{R} \backslash\{0,1\}$.

Analytic continuation along paths

Question

What happens when we extend solutions along paths?

Let's define $\mathbb{H}_{-}=\{x \in \mathbf{C}: \operatorname{Im}(x)<0\}$.
The map f_{0} can be extended to $\mathbb{H}_{\text {_ }}$ through any of the three connected components of $\mathbf{R} \backslash\{0,1\}$. The resulting image $f_{0}\left(\mathbb{H}_{-}\right)$is found by applying the following:

Theorem (Schwarz Reflection Principle)
Let f be a holomorphic function on $\mathbb{H}_{+} \cup(a, b) \cup \mathbb{H}_{-}$, and let $f((a, b))$ be a circle C. Then, $f\left(\mathbb{H}_{-}\right)=g^{-1}\left(\overline{g \circ f\left(\mathbb{H}_{+}\right)}\right)$for any $g \in \mathrm{PGL}_{2}(\mathbf{C})$ sending C into $\mathbf{R} \cup\{\infty\}$.
$\Longrightarrow f\left(\mathbb{H}_{-}\right)$is the mirror image of $f\left(\mathbb{H}_{+}\right)$with respect to C.

Analytic continuation along paths

Let γ be a loop, starting at $x_{0} \in \mathbb{H}_{+}$, going around 0 .
The image $f_{0}(\gamma)$ is a path in $\mathbf{P}^{1}(\mathbf{C})$, crossing the Schwarz triangles $f\left(\mathbb{H}_{+}\right), f\left(\mathbb{H}_{-}\right)$and a mirror image of $f\left(\mathbb{H}_{-}\right)$.

Analytic continuation along paths

Let γ be a loop, starting at $x_{0} \in \mathbb{H}_{+}$, going around 0 .
The image $f_{0}(\gamma)$ is a path in $\mathbf{P}^{1}(\mathbf{C})$, crossing the Schwarz triangles $f\left(\mathbb{H}_{+}\right), f\left(\mathbb{H}_{-}\right)$and a mirror image of $f\left(\mathbb{H}_{-}\right)$.

The analytic continuation $\gamma_{\star} f_{0}$ is a fractional linear transformation: there is $M_{\gamma}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{PGL}_{2}(\mathbf{C})$ such that

$$
\gamma_{\star} f=\frac{a f+b}{c f+d} .
$$

Analytic continuation along paths

Let γ be a loop, starting at $x_{0} \in \mathbb{H}_{+}$, going around 0 .
The image $f_{0}(\gamma)$ is a path in $\mathbf{P}^{1}(\mathbf{C})$, crossing the Schwarz triangles $f\left(\mathbb{H}_{+}\right), f\left(\mathbb{H}_{-}\right)$and a mirror image of $f\left(\mathbb{H}_{-}\right)$.

The analytic continuation $\gamma_{\star} f_{0}$ is a fractional linear transformation: there is $M_{\gamma}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{PGL}_{2}(\mathbf{C})$ such that

$$
\gamma_{\star} f=\frac{a f+b}{c f+d} .
$$

The assignment $\gamma \mapsto M_{\gamma}$ describes the projective monodromy representation

$$
\tilde{\rho}: \pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right) \longrightarrow \mathrm{PGL}_{2}(\mathbf{C}) .
$$

The projective monodromy

Let's compute the projective monodromy groups $\tilde{\rho}\left(\pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right)\right)$.

The projective monodromy

Let's compute the projective monodromy groups $\tilde{\rho}\left(\pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right)\right)$.

Theorem

The angles of the Schwarz triangle $f_{0}\left(\mathbb{H}_{+}\right)$are:

- $|1-c| \pi$ at " $f_{0}(0)$ "
- $|c-a-b| \pi$ at " $f_{0}(1)$ "
- $|a-b| \pi$ at " $f_{0}(\infty)$ "

The projective monodromy

Let's compute the projective monodromy groups $\tilde{\rho}\left(\pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right)\right)$.

Theorem

The angles of the Schwarz triangle $f_{0}\left(\mathbb{H}_{+}\right)$are:

- $|1-c| \pi$ at " $f_{0}(0)$ "
- $|c-a-b| \pi$ at "for $f_{0}(1)$ "
- $|a-b| \pi$ at " $f_{0}(\infty)$ "

Suppose that the angles are integral quotients of π, and define $|1-c|=\frac{1}{p},|c-a-b|=\frac{1}{q},|a-b|=\frac{1}{r}$.

We are in one of three cases:

- $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1$ (Spherical)
- $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$ (Euclidean)
- $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$ (Hyperbolic)

Spherical monodromy

Finite Schwarz triangles on a sphere \Longrightarrow Projective monodromy is finite.

Spherical monodromy

Finite Schwarz triangles on a sphere \Longrightarrow Projective monodromy is finite.

- $p=2, q=2 \Longrightarrow$ Dihedral monodromy $\left(D_{2 r}\right)$

Spherical monodromy

Finite Schwarz triangles on a sphere \Longrightarrow Projective monodromy is finite.

- $p=2, q=2 \Longrightarrow$ Dihedral monodromy $\left(D_{2 r}\right)$
- $p=2, q=3, r=3 \Longrightarrow$ Tetrahedral monodromy $\left(A_{4}\right)$

Spherical monodromy

Finite Schwarz triangles on a sphere \Longrightarrow Projective monodromy is finite.

- $p=2, q=2 \Longrightarrow$ Dihedral monodromy $\left(D_{2 r}\right)$
- $p=2, q=3, r=3 \Longrightarrow$ Tetrahedral monodromy $\left(A_{4}\right)$
- $p=2, q=3, r=4 \Longrightarrow$ Octahedral monodromy $\left(S_{4}\right)$

Spherical monodromy

Finite Schwarz triangles on a sphere \Longrightarrow Projective monodromy is finite.

- $p=2, q=2 \Longrightarrow$ Dihedral monodromy $\left(D_{2 r}\right)$
- $p=2, q=3, r=3 \Longrightarrow$ Tetrahedral monodromy $\left(A_{4}\right)$
- $p=2, q=3, r=4 \Longrightarrow$ Octahedral monodromy $\left(S_{4}\right)$
- $p=2, q=3, r=5 \Longrightarrow$ Icosahedral monodromy $\left(A_{5}\right)$

Euclidean monodromy

Infinite Schwarz triangles on the Euclidean plane, but only finite possibilities:

- $p=2, q=3, r=6 \Longrightarrow$ Hexagonal lattice

Euclidean monodromy

Infinite Schwarz triangles on the Euclidean plane, but only finite possibilities:

- $p=2, q=3, r=6 \Longrightarrow$ Hexagonal lattice
- $p=2, q=4, r=4 \Longrightarrow$ Square lattice

Euclidean monodromy

Infinite Schwarz triangles on the Euclidean plane, but only finite possibilities:

- $p=2, q=3, r=6 \Longrightarrow$ Hexagonal lattice
- $p=2, q=4, r=4 \Longrightarrow$ Square lattice
- $p=3, q=3, r=3 \Longrightarrow$ Equilateral-triangular lattice

Euclidean monodromy

Infinite Schwarz triangles on the Euclidean plane, but only finite possibilities:

- $p=2, q=3, r=6 \Longrightarrow$ Hexagonal lattice
- $p=2, q=4, r=4 \Longrightarrow$ Square lattice
- $p=3, q=3, r=3 \Longrightarrow$ Equilateral-triangular lattice
- $(p=2, q=2, r=\infty \Longrightarrow$ Ruler $)$

Euclidean monodromy

Infinite Schwarz triangles on the Euclidean plane, but only finite possibilities:

- $p=2, q=3, r=6 \Longrightarrow$ Hexagonal lattice
- $p=2, q=4, r=4 \Longrightarrow$ Square lattice
- $p=3, q=3, r=3 \Longrightarrow$ Equilateral-triangular lattice
- $(p=2, q=2, r=\infty \Longrightarrow$ Ruler $)$

Note: the projective monodromy is a discrete subgroup of affine transformations ($f \mapsto a f+b$), i.e. a Wallpaper group.

Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

$$
\text { - } p=2, q=3, r=7 \Longrightarrow(2,3,7) \text { triangular group }
$$

Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

- $p=2, q=3, r=7 \Longrightarrow(2,3,7)$ triangular group
- $p=2, q=4, r=5$

Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

- $p=2, q=3, r=7 \Longrightarrow(2,3,7)$ triangular group
- $p=2, q=4, r=5$
- $p=3, q=3, r=4$

Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

- $p=2, q=3, r=7 \Longrightarrow(2,3,7)$ triangular group
- $p=2, q=4, r=5$
- $p=3, q=3, r=4$
- $\left(p=2, q=3, r=\infty \Longrightarrow\right.$ conjugate to $\left.\operatorname{PSL}_{2}(\mathbf{Z})\right)$

The End

... but in fact it's just the beginning!

