Hypergeometric functions, part II

Special Functions Reading Group

Daniele Turchetti

Dalhousie University

February 24, 2020

The Hypergeometric Series

Recall the (Euler) hypergeometric series:

$${}_2F_1\left(\begin{matrix}a, b\\c \end{matrix}; x\right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} x^n.$$

This defines a holomorphic function in $D(0,1) \subset \mathbf{C}$.

The Hypergeometric Series

Recall the (Euler) hypergeometric series:

$${}_2F_1\left(\begin{matrix}a,b\\c\end{matrix};x\right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} x^n.$$

This defines a holomorphic function in $D(0,1) \subset \mathbf{C}$.

It is a solution of the hypergeometric equation

$$E(a,b,c):x(1-x)\frac{d^2y}{\mathrm{d}x^2}+[c-(a+b+1)x]\frac{dy}{\mathrm{d}x}-aby=0,$$

which is a linear homogeneous ODE with regular singularities at $0, 1, \infty$.

The Hypergeometric Series

Recall the (Euler) hypergeometric series:

$${}_2F_1\left(\begin{matrix}a,b\\c\end{matrix};x\right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} x^n.$$

This defines a holomorphic function in $D(0,1) \subset \mathbf{C}$.

It is a solution of the hypergeometric equation

$$E(a,b,c):x(1-x)\frac{d^2y}{\mathrm{d}x^2}+[c-(a+b+1)x]\frac{dy}{\mathrm{d}x}-aby=0,$$

which is a linear homogeneous ODE with regular singularities at $0, 1, \infty$.

Fact

Every second-order ODE with three regular singularities can be transformed into a hypergeometric one.

Monodromy of ODE with regular singular points

The space of solutions of E(a, b, c) around a point $x_0 \in \mathbf{C} - \{0, 1\}$ is a 2-dimensional vector space over **C**. Any such solution can be analytically continued along every path γ in $\mathbf{C} - \{0, 1\}$.

Monodromy of ODE with regular singular points

The space of solutions of E(a, b, c) around a point $x_0 \in \mathbf{C} - \{0, 1\}$ is a 2-dimensional vector space over **C**. Any such solution can be analytically continued along every path γ in $\mathbf{C} - \{0, 1\}$.

Let γ be a loop starting and ending in x_0 , and y_1, y_2 two linearly independent solutions of E(a, b, c) around x_0 . We have:

$$\begin{pmatrix} \gamma_* y_1 \\ \gamma_* y_2 \end{pmatrix} = M_\gamma \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

The correspondence $\gamma \mapsto M_{\gamma}$ realizes a group representation

$$\rho: \pi_1(\mathbf{C} - \{0,1\}, x_0) \longrightarrow GL_2(\mathbf{C})$$

called monodromy representation. It is uniquely associated with E(a, b, c) up to conjugation in $GL_2(\mathbf{C})$.

Monodromy of ODE with regular singular points

The space of solutions of E(a, b, c) around a point $x_0 \in \mathbf{C} - \{0, 1\}$ is a 2-dimensional vector space over **C**. Any such solution can be analytically continued along every path γ in $\mathbf{C} - \{0, 1\}$.

Let γ be a loop starting and ending in x_0 , and y_1, y_2 two linearly independent solutions of E(a, b, c) around x_0 . We have:

$$\begin{pmatrix} \gamma_* y_1 \\ \gamma_* y_2 \end{pmatrix} = M_\gamma \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

The correspondence $\gamma \mapsto M_{\gamma}$ realizes a group representation

$$\rho: \pi_1(\mathbf{C} - \{0,1\}, x_0) \longrightarrow GL_2(\mathbf{C})$$

called monodromy representation. It is uniquely associated with E(a, b, c) up to conjugation in $GL_2(\mathbf{C})$.

The (conjugacy class of) $\rho(\pi_1(\mathbf{C} - \{0, 1\}, x_0))$ is the monodromy group of E(a, b, c).

Another solution of E(a, b, c)

Let D be the differential operator $y \mapsto x \frac{dy}{dx}$. Then E(a, b, c) is

$$[(a+D)(b+D)-(c+D)(1+D)\frac{1}{x}]y=0.$$

The equality of differential operators

$$Dx^s = x^s(s+D)$$

yields

$$[(a+D)(b+D)-(c+D)(1+D)\frac{1}{x}]x^{1-c} = x^{1-c}[(a+1-c+D)(b+1-c+D)-(1+D)(2-c+D)\frac{1}{x}].$$

Then,
$$x^{1-c}{}_{2}F_{1}\left(\begin{matrix} a+1-c, b+1-c\\ 2-c \end{matrix}; x \end{matrix}\right)$$
 is a second solution of $E(a, b, c)$ when $c \notin \mathbb{N}$.

Solutions around 1

The hypergeometric equation

$$E(a,b,c):x(1-x)\frac{d^2y}{\mathrm{d}x^2}+[c-(a+b+1)x]\frac{dy}{\mathrm{d}x}-aby=0$$

for $\xi = 1 - x$ becomes

$$\xi(1-\xi)rac{d^2y}{d\xi^2} + [a+b+1-c-(a+b+1)\xi)]rac{dy}{d\xi} - aby = 0.$$

Solutions around 1

The hypergeometric equation

$$E(a, b, c): x(1-x)\frac{d^2y}{dx^2} + [c - (a + b + 1)x]\frac{dy}{dx} - aby = 0$$

for $\xi = 1 - x$ becomes

$$\xi(1-\xi)rac{d^2y}{d\xi^2}+[a+b+1-c-(a+b+1)\xi)]rac{dy}{d\xi}-aby=0.$$

Hence it is hypergeometric, with solution ${}_2F_1\left(\begin{array}{c}a, & b\\a+b+1-c\end{array}; 1-x\right)$.

Solutions around 1

The hypergeometric equation

$$E(a, b, c): x(1-x)\frac{d^2y}{dx^2} + [c - (a + b + 1)x]\frac{dy}{dx} - aby = 0$$

for $\xi = 1 - x$ becomes

$$\xi(1-\xi)rac{d^2y}{d\xi^2}+[a+b+1-c-(a+b+1)\xi)]rac{dy}{d\xi}-aby=0.$$

Hence it is hypergeometric, with solution ${}_{2}F_{1}\left(\begin{matrix}a, & b\\a+b+1-c & ; 1-x\end{matrix}\right)$. As before, another solution can be found:

$$(1-x)^{c-a-b}{}_2F_1\left(\begin{array}{c}c-a, c-b\\c+1-a-b\end{array};1-x\right).$$

for $c - a - b \notin \mathbf{N}$

Solutions around ∞

The hypergeometric equation

$$E(a, b, c) : [(a+D)(b+D) - (c+D)(1+D)\frac{1}{x}]y = 0$$

for $\xi = \frac{1}{x}$ becomes

$$[(a - D)(b - D) - (c - D)(1 - D)\xi]y = 0.$$

Solutions around ∞

The hypergeometric equation

$$E(a,b,c):[(a+D)(b+D)-(c+D)(1+D)\frac{1}{x}]y=0$$
 for $\xi=\frac{1}{x}$ becomes

$$[(a-D)(b-D) - (c-D)(1-D)\xi]y = 0.$$

We have

$$[(a - D)(b - D) - (c - D)(1 - D)\xi]\xi^{a}$$

= $(-a + D)(-b + D)\xi^{a} - (-c + D)(-1 + D)\xi^{1+a}$
= $-\xi^{1+a}[(1 + a - c + D)(a + D) - (1 + D)(a - b + 1 + D)\frac{1}{\xi}].$

Solutions around ∞

The hypergeometric equation

$$E(a,b,c): [(a+D)(b+D)-(c+D)(1+D)rac{1}{x}]y=0$$
 for $\xi=rac{1}{x}$ becomes

$$[(a-D)(b-D) - (c-D)(1-D)\xi]y = 0.$$

We have

$$[(a - D)(b - D) - (c - D)(1 - D)\xi]\xi^{a}$$

= $(-a + D)(-b + D)\xi^{a} - (-c + D)(-1 + D)\xi^{1+a}$
= $-\xi^{1+a}[(1 + a - c + D)(a + D) - (1 + D)(a - b + 1 + D)\frac{1}{\xi}].$

Two solutions are:

$$\xi^{a}{}_{2}F_{1}\left(\begin{matrix}a, & 1+a-c\\ a-b+1 & ;\xi\end{matrix}\right) \text{ and } \xi^{b}{}_{2}F_{1}\left(\begin{matrix}b, & 1+b-c\\ b-a+1 & ;\xi\end{matrix}\right)$$
for $a-b\notin \mathbb{N}.$

Connnection matrices

We found six solutions of E(a, b, c):

- f_{01}, f_{02} continuation in $\bm{C} \setminus \{(-\infty, 0] \cup [1, +\infty)\}$ of the solutions around 0
- f_{11}, f_{12} continuation in ${f C} \setminus (-\infty, 1]$ of the solutions around 1
- $f_{\infty 1}, f_{\infty 2}$ continuation in ${f C} \setminus [0, +\infty)$ of the solutions around ∞

Suppose $a, b, c \in \mathbf{R}$. Then the solutions are real-valued over the real part of their domains of definition.

Connnection matrices

We found six solutions of E(a, b, c):

- f_{01}, f_{02} continuation in $\textbf{C} \setminus \{(-\infty, 0] \cup [1, +\infty)\}$ of the solutions around 0
- f_{11}, f_{12} continuation in ${f C} \setminus (-\infty, 1]$ of the solutions around 1
- $f_{\infty 1}, f_{\infty 2}$ continuation in ${f C} \setminus [0, +\infty)$ of the solutions around ∞

Suppose $a, b, c \in \mathbf{R}$. Then the solutions are real-valued over the real part of their domains of definition.

In the domain $\mathbb{H}_+ = \{x \in \mathbf{C} : \mathrm{Im}(x) > 0\}$, these solutions lie in a 2-dimensional **C**-vector space. Hence there are matrices M_+^{10} and $M_+^{\infty 0}$ in $GL_2(\mathbf{C})$ such that

$$\begin{pmatrix} f_{01} \\ f_{02} \end{pmatrix} = M_{+}^{10} \begin{pmatrix} f_{11} \\ f_{12} \end{pmatrix}$$
$$\begin{pmatrix} f_{01} \\ f_{02} \end{pmatrix} = M_{+}^{\infty 0} \begin{pmatrix} f_{\infty 1} \\ f_{\infty 2} \end{pmatrix}$$

called connection matrices.

Define continuous maps f_i :

$$f_i(x) := [f_{i1}(x) : f_{i2}(x)] \in \mathbf{P}^1(\mathbf{C}) \text{ for } i = 0, 1, \infty.$$

Define continuous maps f_i :

$$f_i(x) := [f_{i1}(x) : f_{i2}(x)] \in \mathbf{P}^1(\mathbf{C}) \text{ for } i = 0, 1, \infty.$$

Note:

• $f_0((0,1)) = (f_0(0), f_0(1))$

•
$$f_1((1,\infty)) = (f_1(1), f_1(\infty))$$

•
$$f_{\infty}((-\infty,0)) = (f_{\infty}(-\infty), f_{\infty}(0))$$

and these are real intervals.

Define continuous maps f_i :

$$f_i(x) := [f_{i1}(x) : f_{i2}(x)] \in \mathbf{P}^1(\mathbf{C}) \text{ for } i = 0, 1, \infty.$$

Note:

• $f_0((0,1)) = (f_0(0), f_0(1))$

•
$$f_1((1,\infty)) = (f_1(1), f_1(\infty))$$

•
$$f_{\infty}((-\infty,0)) = (f_{\infty}(-\infty), f_{\infty}(0))$$

and these are real intervals.

In \mathbb{H}_+ , f_0, f_1, f_∞ are related by linear fractional transformations (given by the connection matrices), that send lines to circles and lines: the boundary of $f_i(\mathbb{H}_+)$ is a "triangle with circular sides", a.k.a. a Schwarz triangle.

Question

What happens when we extend solutions along paths?

Question

What happens when we extend solutions along paths?

Let's define $\mathbb{H}_{-} = \{x \in \mathbf{C} : \operatorname{Im}(x) < 0\}$. The map f_0 can be extended to \mathbb{H}_{-} through any of the three connected components of $\mathbf{R} \setminus \{0, 1\}$.

Question

What happens when we extend solutions along paths?

Let's define $\mathbb{H}_{-} = \{x \in \mathbf{C} : \operatorname{Im}(x) < 0\}.$

The map f_0 can be extended to \mathbb{H}_- through any of the three connected components of $\mathbf{R} \setminus \{0,1\}$. The resulting image $f_0(\mathbb{H}_-)$ is found by applying the following:

Theorem (Schwarz Reflection Principle)

Let f be a holomorphic function on $\underline{\mathbb{H}_+ \cup (a, b)} \cup \underline{\mathbb{H}_-}$, and let f((a, b))be a circle C. Then, $f(\underline{\mathbb{H}_-}) = g^{-1}(\underline{g \circ f(\underline{\mathbb{H}_+})})$ for any $g \in \mathrm{PGL}_2(\mathbf{C})$ sending C into $\mathbf{R} \cup \{\infty\}$.

 \implies $f(\mathbb{H}_{-})$ is the mirror image of $f(\mathbb{H}_{+})$ with respect to C.

Analytic continuation along paths

Let γ be a loop, starting at $x_0 \in \mathbb{H}_+$, going around 0.

The image $f_0(\gamma)$ is a path in $\mathbf{P}^1(\mathbf{C})$, crossing the Schwarz triangles $f(\mathbb{H}_+)$, $f(\mathbb{H}_-)$ and a mirror image of $f(\mathbb{H}_-)$.

Let γ be a loop, starting at $x_0 \in \mathbb{H}_+$, going around 0.

The image $f_0(\gamma)$ is a path in $\mathbf{P}^1(\mathbf{C})$, crossing the Schwarz triangles $f(\mathbb{H}_+)$, $f(\mathbb{H}_-)$ and a mirror image of $f(\mathbb{H}_-)$.

The analytic continuation $\gamma_{\star} f_0$ is a fractional linear transformation: there is $M_{\gamma} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PGL}_2(\mathbf{C})$ such that $\gamma_{\star} f = \frac{af+b}{cf+d}.$ Let γ be a loop, starting at $x_0 \in \mathbb{H}_+$, going around 0.

The image $f_0(\gamma)$ is a path in $\mathbf{P}^1(\mathbf{C})$, crossing the Schwarz triangles $f(\mathbb{H}_+)$, $f(\mathbb{H}_-)$ and a mirror image of $f(\mathbb{H}_-)$.

The analytic continuation $\gamma_{\star} f_0$ is a fractional linear transformation: there is $M_{\gamma} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PGL}_2(\mathbb{C})$ such that $\gamma_{\star} f = \frac{af+b}{cf+d}.$

The assignment $\gamma \mapsto {\it M}_{\gamma}$ describes the projective monodromy representation

$$\tilde{
ho}: \pi_1(\mathbf{C} - \{0,1\}, x_0) \longrightarrow \mathrm{PGL}_2(\mathbf{C}).$$

The projective monodromy

Let's compute the projective monodromy groups $\tilde{\rho}(\pi_1(\mathbf{C} - \{0, 1\}, x_0))$.

The projective monodromy

Let's compute the projective monodromy groups $\tilde{\rho}(\pi_1(\mathbf{C} - \{0, 1\}, x_0))$.

Theorem

The angles of the Schwarz triangle $f_0(\mathbb{H}_+)$ are:

• $|1-c|\pi$ at "f₀(0)"

•
$$|c - a - b|\pi$$
 at " $f_0(1)$ "

•
$$|a-b|\pi$$
 at " $f_0(\infty)$ "

The projective monodromy

Let's compute the projective monodromy groups $\tilde{\rho}(\pi_1(\mathbf{C} - \{0, 1\}, x_0))$.

Theorem

The angles of the Schwarz triangle $f_0(\mathbb{H}_+)$ are:

• $|1-c|\pi$ at "f_0(0)"

•
$$|c-a-b|\pi$$
 at "f_0(1)"

•
$$|\mathsf{a}-\mathsf{b}|\pi$$
 at "f_0 (∞) "

Suppose that the angles are integral quotients of π , and define $|1-c| = \frac{1}{p}$, $|c-a-b| = \frac{1}{q}$, $|a-b| = \frac{1}{r}$.

We are in one of three cases:

- $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$ (Spherical)
- $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$ (Euclidean)
- $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$ (Hyperbolic)

Finite Schwarz triangles on a sphere \implies Projective monodromy is finite.

• $p = 2, q = 2 \implies$ Dihedral monodromy (D_{2r})

- $p = 2, q = 2 \implies$ Dihedral monodromy (D_{2r})
- $p = 2, q = 3, r = 3 \implies$ Tetrahedral monodromy (A₄)

- $p = 2, q = 2 \implies$ Dihedral monodromy (D_{2r})
- $p = 2, q = 3, r = 3 \implies$ Tetrahedral monodromy (A_4)
- $p = 2, q = 3, r = 4 \implies$ Octahedral monodromy (S_4)

- $p = 2, q = 2 \implies$ Dihedral monodromy (D_{2r})
- $p = 2, q = 3, r = 3 \implies$ Tetrahedral monodromy (A₄)
- $p = 2, q = 3, r = 4 \implies$ Octahedral monodromy (S_4)
- $p = 2, q = 3, r = 5 \implies$ lcosahedral monodromy (A_5)

• $p = 2, q = 3, r = 6 \implies$ Hexagonal lattice

- $p = 2, q = 3, r = 6 \implies$ Hexagonal lattice
- $p = 2, q = 4, r = 4 \implies$ Square lattice

- $p = 2, q = 3, r = 6 \implies$ Hexagonal lattice
- $p = 2, q = 4, r = 4 \implies$ Square lattice
- $p = 3, q = 3, r = 3 \implies$ Equilateral-triangular lattice

- $p = 2, q = 3, r = 6 \implies$ Hexagonal lattice
- $p = 2, q = 4, r = 4 \implies$ Square lattice
- $p = 3, q = 3, r = 3 \implies$ Equilateral-triangular lattice
- $(p = 2, q = 2, r = \infty \implies \text{Ruler})$

Note: the projective monodromy is a discrete subgroup of affine transformations $(f \mapsto af + b)$, i.e. a Wallpaper group.

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

• $p = 2, q = 3, r = 7 \implies (2,3,7)$ triangular group

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

•
$$p = 2, q = 3, r = 7 \implies (2,3,7)$$
 triangular group

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

•
$$p = 2, q = 3, r = 7 \implies (2,3,7)$$
 triangular group

Infinite Schwarz triangles on the Hyperbolic plane, and infinite possibilities.

Some examples:

• $p = 2, q = 3, r = 7 \implies (2,3,7)$ triangular group

• $(p = 2, q = 3, r = \infty \implies \text{conjugate to } \text{PSL}_2(\mathbf{Z}))$

... but in fact it's just the beginning!