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The Hypergeometric Series

Recall the (Euler) hypergeometric series:

2F1

(
a, b
c

; x

)
=
∞∑
n=0

(a)n(b)n
(c)n(1)n

xn.

This defines a holomorphic function in D(0, 1) ⊂ C.

It is a solution of the hypergeometric equation

E (a, b, c) : x(1− x)
d2y

dx2
+ [c − (a + b + 1)x ]

dy

dx
− aby = 0,

which is a linear homogeneous ODE with regular singularities at 0, 1,∞.

Fact

Every second-order ODE with three regular singularities can be
transformed into a hypergeometric one.
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Monodromy of ODE with regular singular points

The space of solutions of E (a, b, c) around a point x0 ∈ C− {0, 1} is a
2-dimensional vector space over C. Any such solution can be analytically
continued along every path γ in C− {0, 1}.

Let γ be a loop starting and ending in x0, and y1, y2 two linearly
independent solutions of E (a, b, c) around x0. We have:(

γ∗y1
γ∗y2

)
= Mγ

(
y1
y2

)
.

The correspondence γ 7→ Mγ realizes a group representation

ρ : π1(C− {0, 1}, x0) −→ GL2(C)

called monodromy representation. It is uniquely associated with
E (a, b, c) up to conjugation in GL2(C).

The (conjugacy class of) ρ(π1(C− {0, 1}, x0)) is the monodromy group
of E (a, b, c).
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Another solution of E (a, b, c)

Let D be the differential operator y 7→ x dy
dx .

Then E (a, b, c) is

[(a + D)(b + D)− (c + D)(1 + D)
1

x
]y = 0.

The equality of differential operators

Dx s = x s(s + D)

yields

[(a+D)(b+D)−(c+D)(1+D)
1

x
]x1−c = x1−c [(a+1−c+D)(b+1−c+D)−(1+D)(2−c+D)

1

x
].

Then, x1−c2F1

(
a + 1− c , b + 1− c

2− c
; x

)
is a second solution of

E (a, b, c) when c /∈ N.
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Solutions around 1

The hypergeometric equation

E (a, b, c) : x(1− x)
d2y

dx2
+ [c − (a + b + 1)x ]

dy

dx
− aby = 0

for ξ = 1− x becomes

ξ(1− ξ)
d2y

dξ2
+ [a + b + 1− c − (a + b + 1)ξ)]

dy

dξ
− aby = 0.

Hence it is hypergeometric, with solution 2F1

(
a, b

a + b + 1− c
; 1− x

)
.

As before, another solution can be found:

(1− x)c−a−b2F1

(
c − a, c − b

c + 1− a− b
; 1− x

)
.

for c − a− b /∈ N
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Solutions around ∞
The hypergeometric equation

E (a, b, c) : [(a + D)(b + D)− (c + D)(1 + D)
1

x
]y = 0

for ξ = 1
x becomes

[(a− D)(b − D)− (c − D)(1− D)ξ]y = 0.

We have

[(a− D)(b − D)− (c − D)(1− D)ξ]ξa

= (−a+ D)(−b + D)ξa − (−c + D)(−1 + D)ξ1+a

= −ξ1+a[(1 + a− c + D)(a+ D)− (1 + D)(a− b + 1 + D)
1

ξ
].

Two solutions are:

ξa2F1

(
a, 1 + a− c

a− b + 1
; ξ

)
and ξb2F1

(
b, 1 + b − c

b − a+ 1
; ξ

)
for a− b /∈ N.
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Connnection matrices

We found six solutions of E (a, b, c):

f01, f02 continuation in C \ {(−∞, 0] ∪ [1,+∞)} of the solutions
around 0

f11, f12 continuation in C \ (−∞, 1] of the solutions around 1

f∞1, f∞2 continuation in C \ [0,+∞) of the solutions around ∞
Suppose a, b, c ∈ R. Then the solutions are real-valued over the real part
of their domains of definition.

In the domain H+ = {x ∈ C : Im(x) > 0}, these solutions lie in a
2-dimensional C-vector space. Hence there are matrices M10

+ and M∞0
+ in

GL2(C) such that

(
f01
f02

)
= M10

+

(
f11
f12

)
(
f01
f02

)
= M∞0

+

(
f∞1

f∞2

)
called connection matrices.
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Schwarz triangles

Define continuous maps fi :

fi (x) := [fi1(x) : fi2(x)] ∈ P1(C) for i = 0, 1,∞.

Note:

f0((0, 1)) = (f0(0), f0(1))

f1((1,∞)) = (f1(1), f1(∞))

f∞((−∞, 0)) = (f∞(−∞), f∞(0))

and these are real intervals.

In H+, f0, f1, f∞ are related by linear fractional transformations (given by
the connection matrices), that send lines to circles and lines: the
boundary of fi (H+) is a “triangle with circular sides”, a.k.a. a Schwarz
triangle.
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Analytic continuation along paths

Question

What happens when we extend solutions along paths?

Let’s define H− = {x ∈ C : Im(x) < 0}.
The map f0 can be extended to H− through any of the three connected
components of R \ {0, 1}. The resulting image f0(H−) is found by
applying the following:

Theorem (Schwarz Reflection Principle)

Let f be a holomorphic function on H+ ∪ (a, b) ∪H−, and let f ((a, b))
be a circle C . Then, f (H−) = g−1

(
g ◦ f (H+)

)
for any g ∈ PGL2(C)

sending C into R ∪ {∞}.

=⇒ f (H−) is the mirror image of f (H+) with respect to C .
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Analytic continuation along paths

Let γ be a loop, starting at x0 ∈ H+, going around 0.

The image f0(γ) is a path in P1(C), crossing the Schwarz triangles
f (H+), f (H−) and a mirror image of f (H−).

The analytic continuation γ?f0 is a fractional linear transformation: there

is Mγ =

(
a b
c d

)
∈ PGL2(C) such that

γ?f =
af + b

cf + d
.

The assignment γ 7→ Mγ describes the projective monodromy
representation

ρ̃ : π1(C− {0, 1}, x0) −→ PGL2(C).
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The projective monodromy

Let’s compute the projective monodromy groups ρ̃(π1(C− {0, 1}, x0)).

Theorem

The angles of the Schwarz triangle f0(H+) are:

|1− c |π at “f0(0)”

|c − a− b|π at “f0(1)”

|a− b|π at “f0(∞)”

Suppose that the angles are integral quotients of π, and define
|1− c | = 1

p , |c − a− b| = 1
q , |a− b| = 1

r .

We are in one of three cases:
1
p + 1

q + 1
r > 1 (Spherical)

1
p + 1

q + 1
r = 1 (Euclidean)

1
p + 1

q + 1
r < 1 (Hyperbolic)
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Spherical monodromy

Finite Schwarz triangles on a sphere =⇒ Projective monodromy is finite.

p = 2, q = 2 =⇒ Dihedral monodromy (D2r )

p = 2, q = 3, r = 3 =⇒ Tetrahedral monodromy (A4)

p = 2, q = 3, r = 4 =⇒ Octahedral monodromy (S4)

p = 2, q = 3, r = 5 =⇒ Icosahedral monodromy (A5)
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Euclidean monodromy

Infinite Schwarz triangles on the Euclidean plane, but only finite
possibilities:

p = 2, q = 3, r = 6 =⇒ Hexagonal lattice

p = 2, q = 4, r = 4 =⇒ Square lattice

p = 3, q = 3, r = 3 =⇒ Equilateral-triangular lattice

(p = 2, q = 2, r =∞ =⇒ Ruler)

Note: the projective monodromy is a discrete subgroup of affine
transformations (f 7→ af + b), i.e. a Wallpaper group.
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Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite
possibilities.

Some examples:

p = 2, q = 3, r = 7 =⇒ (2,3,7) triangular group

p = 2, q = 4, r = 5

p = 3, q = 3, r = 4

(p = 2, q = 3, r =∞ =⇒ conjugate to PSL2(Z))
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The End

. . . but in fact it’s just the beginning!
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